Estimating medians for combined geographies

ACS Data Users Conference

May 15, 2019

Custom geographic areas

- Harmonizing geographies over time

Monthly gross rent	Tra	ct A	Tra	ct B	Tract	s A + B
Less than \$250	200	(29%)	0	(0%)	200	(20%)
\$250 to \$499	250	(36%)	50	(17%)	300	(30%)
\$500 to \$999	150	(21%)	150	(50%)	300	(30%)
\$1,000 or more	100	(14%)	100	(33%)	200	(20%)
Total	700	(100%)	300	(100%)	1,000	(100%)

• Aggregating tracts or block groups for greater reliability, or fitting natural borders

What about medians?

Monthly gross rent	Trac	ct A	Tra	ct B	Tracts	s A + B
Less than \$250	200	(29%)	0	(0%)	200	(20%)
\$250 to \$499	250	(36%)	50	(17%)	300	(30%)
\$500 to \$999	150	(21%)	150	(50%)	300	(30%)
\$1,000 or more	100	(14%)	100	(33%)	200	(20%)
Total	700	(100%)	300	(100%)	1,000	(100%)

	Tract A	Tract B	Tracts A + B
Median gross rent	\$450	\$900	<mark>????</mark>

Users often take a weighted average of the two medians: $($450 \times 700) + ($900 \times 300)$ = <mark>\$585</mark> (700 + 300)

But the distribution shows that the midpoint is \$499.50!

Obtaining medians from grouped frequency data

	Frequency	Cumulative frequency	Cumulative percentage
Less than \$300	10	10	10%
\$300 to \$499	10	20	20%
\$500 to \$749	10	30	30%
\$750 to \$999	15	55	55%
\$1,000 to \$1,499	25	80	80%
\$1,500 or more	20	100	100%
Total	100		

30% have rent <= \$749 (\$749 is the 30th percentile)

> The median (50th percentile) is somewhere between \$749 and \$999

55% have rent <= \$999 (\$999 is the 55th percentile)

The formula (back to your first stats class)

	Frequency	Cumulative frequency	Cumulative percentage
Less than \$300	10	10	10%
\$300 to \$499	10	20	20%
\$500 to \$749	10	30	30%
\$750 to \$999	15	55	55%
\$1,000 to \$1,499	25	80	80%
\$1,500 or more	20	100	100%
Total	100		

 $$749 = 30^{\text{th}} \text{ percentile}$

$$+\left(\left[\frac{50-30}{55-30}\right]\times\left[\$999-\$74\right] + ([0.8]\times[\$250])\right)$$

$$+($200) = $949$$

 $$999 = 55^{\text{th}}$ percentile

Why this works

- There's a simple correspondence between percentiles and dollars!
- The 50th percentile is 80% of the distance between the 30th and 55th percentiles, so it's also 80% of the distance between \$749 and \$999.

Within the "middle bucket" (\$749 - \$999), we're assuming a uniform (even) distribution:

	80%	20%	
\$899	\$94	19	\$999 (55th %il

But what if it doesn't work?

All this rests on the uniformity of the distribution:

Test 1: Use microdata to examine distributions

- How uniform are the distributions in these "middle categories"? Using the microdata, consult each tract's PUMA and measure the uniformity of
- the tract's "middle category"
- Averaging across all tracts, the "middle category" in their PUMA is fairly uniform (though not so much for household income):

Test 2: Roll up block groups to tracts

- Sum up the ACS estimates from block groups to tracts Calculate the median, assuming a uniform distribution of the "middle category"
- Compare to published tract medians

Test 2: Median age

Mean percent error

Root mean square error (in years)

Test 2: Median gross rent

Mean percent error

Root mean square error (in dollars)

Test 2: Median household income

Mean percent error

Root mean square error (in dollars)

Summing up

- Estimating the median from the combined frequencies is: - Better than taking a weighted average of the medians Pretty accurate overall (<2% average error)
- If increased accuracy is needed, consider simulating the full distribution using the rest of the percentiles and find the median that way

Questions? Concerns? Want SAS code?

Matt.Schroeder@metc.state.mn.us

