Accounting for Group Classification Error in Variance Estimates Using the American Community Survey

Matthew W. Brault

For the American Community Survey Data Users Conference
May 29, 2014

Motivation

- Wanted to classify occupations as "high" or "low" wage jobs.
- Great! ACS can do that!
- Calculate median earnings for individual occupations. Set a criteria. Define occupations.
- But how certain am I about that classification?
- How do I account for that uncertainty in my final estimate?

Outline

- General case
- Naïve method
- Sophisticated method
- Example using areas of concentrated poverty
- Simulation

General Case

- Individuals are arranged in K groups
- For each group $K=k$, a statistic θ_{k} is calculated with standard error σ_{k}.
- θ_{k} is compared against some critical value τ and an indicator y_{k} is set to 1 or 0 .

$$
y_{k} \begin{cases}=0, & \text { if } \theta_{k} \leq \tau \\ =1, & \text { if } \theta_{k}>\tau\end{cases}
$$

General Case Naïve Variance

- Final estimate is $Y=\sum\left(y_{k} W_{i}\right) / \sum W_{i}$
- Naïve variance

$$
\begin{aligned}
\tilde{Y}_{r} & =\sum\left(y_{k} W_{i, r}\right) / \sum W_{i, r} \\
\sigma_{\tilde{y}}^{2} & =\widetilde{\operatorname{var}}(Y)=\frac{\sum\left(\tilde{Y}_{0}-\tilde{Y}_{r}\right)^{2}}{R(1-\varepsilon)^{2}}
\end{aligned}
$$

General Case Measurement Error

- The assignment of y_{k} is a measurement error problem

$$
\begin{gathered}
y=\hat{y}+\eta, \quad \eta \sim N\left(0, \sigma_{\eta}\right) \\
\sigma_{y}^{2}=\sigma_{\hat{y}}^{2}+\sigma_{\eta}^{2}+2 \sigma_{\hat{y}, \eta}
\end{gathered}
$$

- σ_{η}^{2} is related to the variances of θ_{k}

General Case Sophisticated Variance

$$
\begin{gathered}
y_{k, r} \begin{cases}=0, & \text { if } \theta_{k, r} \leq \tau \\
=1, & \text { if } \theta_{k, r}>\tau\end{cases} \\
Y_{r}=\sum\left(y_{k, r} W_{i, r}\right) / \sum W_{i, r} \\
\sigma_{y}^{2}=\operatorname{var}(Y)=\frac{\sum\left(Y_{0}-Y_{r}\right)^{2}}{R(1-\varepsilon)^{2}}
\end{gathered}
$$

General Case

Measurement Error (Cont.)

- Variance attributed to indicator alone

$$
\begin{gathered}
\delta_{k, r}=y_{k, 0}-y_{k, r} \\
\Delta_{r}=\frac{\sum\left(\delta_{k, r} W_{i, r}\right)}{\sum W_{i, r}}=\tilde{Y}_{r}-Y_{r} \\
\sigma_{\eta}^{2}=\operatorname{var}(\Delta)=\frac{\sum\left(\Delta_{0}-\Delta_{r}\right)^{2}}{R(1-\varepsilon)^{2}}
\end{gathered}
$$

How they relate

$$
\begin{aligned}
\sigma_{y}^{2}=\operatorname{var} & (Y)=\frac{\sum_{R}\left(Y_{0}-Y_{r}\right)^{2}}{R(1-\varepsilon)^{2}}=\frac{\sum_{R}\left(Y_{0}-\widetilde{Y}_{r}+\widetilde{Y}_{r}-Y_{r}\right)^{2}}{R(1-\varepsilon)^{2}} \\
& =\frac{\sum_{R}\left[\left(Y_{0}-\widetilde{Y}_{r}\right)^{2}+\left(\widetilde{Y}_{r}-Y_{r}\right)^{2}+2\left(Y_{0}-\widetilde{Y}_{r}\right)\left(\widetilde{Y}_{r}-Y_{r}\right)\right]}{R(1-\varepsilon)^{2}} \\
& =\frac{\sum_{R}\left(Y_{0}-\widetilde{Y}_{r}\right)^{2}}{R(1-\varepsilon)^{2}}+\frac{\sum_{R}\left(\widetilde{Y}_{r}-Y_{r}\right)^{2}}{R(1-\varepsilon)^{2}}+2 \frac{\sum_{R}\left(Y_{0}-\widetilde{Y}_{r}\right)\left(\widetilde{Y}_{r}-Y_{r}\right)}{R(1-\varepsilon)^{2}} \\
& =\sigma_{\hat{y}}^{2}+\sigma_{\eta}^{2}+2 \sigma_{\hat{y}, \eta}
\end{aligned}
$$

Applications

- Industries as generous providers of health insurance
- Foreign born groups (by country of birth) as "new/emerging" immigrants
- Neighborhoods as impoverished
- Bishaw, 2011
- Etc...

Poverty Areas Example

- Areas With Concentrated Poverty: 2006-2010
- ACS Brief that examines census tracts by poverty rate:
Category I (0-13.7\%)
Category II (13.8\%-19.9\%)
Category III (20.0\%-39.9\%)
Category IV (40.0\%-100.0\%)

Methods

- 72,254 Census tracts in U.S.
- Used 2006-2010 ACS 5-year data to calculate poverty rates for tracts
- Standard errors calculated using replicate weights.
- 517 tracts had rates of 0 percent and 18 had rates of 100 percent
- Standard errors calculated using ACS Production method (based on tract size and average weight in the state)
- Replicate poverty rates simulated from SE

100 Random Tracts

Poverty Rates

Tract Group	Number of Tracts	Percentage of Population
Category I	42,383	61.4
Category II	11,574	16.0
Category III	14,823	19.1
Category IV	3,474	3.5

Tract CVs

U.S. Department of Commerce

Economics and Statistics Administration

Results

	Category I	Category II	Category III	Category IV
Naïve variance (ひ)	0.000153	0.000079	0.000118	0.000025
Naïve standard error	0.012355	0.008887	0.010850	0.005017
Sophisticated variance (var (Y))	0.058874	0.223126	0.023230	0.071863
Sophisticated standard error	0.242639	0.472362	0.152413	0.268073
Measurement error variance $(\operatorname{var}(\Delta))$	0.062034	0.225113	0.024111	0.071109
Covariance $(\operatorname{cov}(Y, \Delta))$	-0.001656	-0.001033	-0.000499	0.000364
Ratio of standard errors	19.64	53.15	14.05	53.43

Size of Standard errors

U.S. Department of Commerce

Economics and Statistics Administration U.S. CENSUS BUREAU
census.gov

State Estimates

	Category I	Category II	Category III	Category IV
Median CV (Naïv)	0.001	0.004	0.004	0.014
Median CV (sophisticated)	0.029	0.118	0.085	0.190
Smallest Ratio of Standard Errors	12.2	18.7	12.1	7.1
Largest Ratio	37.5	55.0	34.6	30.2
Median Ratio	19.9	29.4	17.4	13.7

Simulation

- Attaching to other datasets
- Different number of replicates
- Can't get replicate estimates from public use data
- Use FactFinder Estimates/Standard Errors
- Simulate the Replicate Distribution
- Normal distribution $\sim N\left(\theta_{k}, \gamma \sigma_{k}^{2}\right), \gamma=\frac{R(1-\varepsilon)^{2}}{(R-1)}$

Simulated and Replicate Based Standard Errors - States

U.S. Department of Commerce

Economics and Statistics Administration J.S. CENSUS BUREAU
census.gov

Conclusion

- Error can be quite large!!
- Provide greater utility to working with estimates for small domains as an aggregate
- Properly reflect the level of uncertainty associated with estimates

SAS code available in an appendix to the paper

Thank You!

Matthew W. Brault
Health and Disability Statistics Branch
Social Economic and Housing Statistics Division matthew.w.brault@census.gov 301-763-9112

