#### Automating Tabulation and Reporting of ACS Data for Emergency Management

ACS User Conference May 12, 2015

Matthew Graham Geographer LEHD/Center for Economic Studies U.S. Census Bureau



## Background

- LEHD & OnTheMap
  - Iehd.ces.census.gov
  - onthemap.ces.census.gov



- OnTheMap for Emergency Management
  - onthemap.ces.census.gov/em.html
- Adding ACS...





#### Geographic Selection in OnTheMap for Emergency Management

- Block-based, which allows for reasonable approximation for many emergency events
- No method is perfect, and none will meet all users' requirements.





## **Differences for Adding ACS**

- Larger geographical units (blockgroup for 5year estimates)
- Margins of error are proportionally larger for smaller geographies



## **Differences to Challenges**

- The differences lead us to our two core challenge questions:
  - How can we "best approximate" arbitrary boundaries with blockgroups?
  - 2. How can we minimize the derived margin of error?



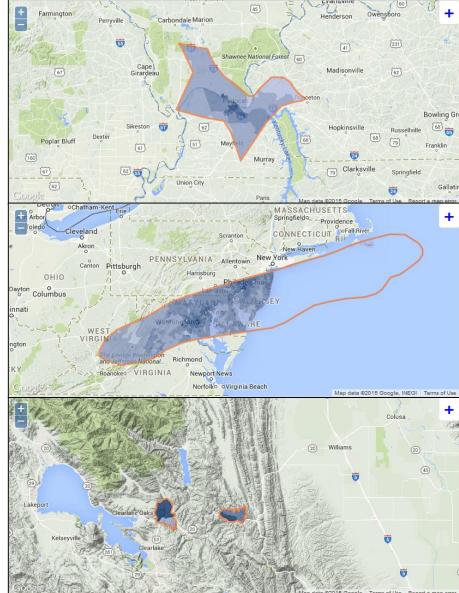
# **Geographic Approximation**

- Many possibilities:
  - Inclusive?
  - Exclusive?
  - Minimize areal difference?
  - Data-driven?
- In this presentation we'll see three. In practice we settled on one.



## **Approximation Methods**

- <u>Minimum</u>: Take blockgroups that are **entirely** inside the event boundary.
- <u>Maximum</u>: Take blockgroups that intersect the event boundary.
- Middle: Take blockgroups that have at least one block with an internal point in the event boundary.




## **Approximation Examples**

- Flood (3/25/2015)
  IL & TN
- Snow (3/5/2015)
  WV to MA

Fire (8/14/2015)
 CA





### **Approximation Outcomes**

| Approximation of Flood Boundary from 3/25/2015 |         |              |         |
|------------------------------------------------|---------|--------------|---------|
| Selection Method                               | Minimum | Middle (IPs) | Maximum |
| Blockgroup Count                               | 96      | 155          | 158     |
| Land Area [sq. mi.]                            | 922     | 3,001        | 3,089   |
| ACS Pop Estimate                               | 114,173 | 181,573      | 185,981 |

| Approximation of Snow Boundary from 3/5/2015 |            |              |            |
|----------------------------------------------|------------|--------------|------------|
| Selection Method                             | Minimum    | Middle (IPs) | Maximum    |
| Blockgroup Count                             | 11,922     | 12,272       | 12,296     |
| Land Area [sq. mi.]                          | 28,344     | 34,274       | 34,435     |
| ACS Pop Estimate                             | 17,444,239 | 18,013,344   | 18,047,590 |

| Approximation of Fire Boundary from 8/14/2012 |         |              |         |
|-----------------------------------------------|---------|--------------|---------|
| Selection Method                              | Minimum | Middle (IPs) | Maximum |
| Blockgroup Count                              | 0       | 3            | 4       |
| Land Area [sq. mi.]                           | 0       | 469          | 477     |
| ACS Pop Estimate                              | 0       | 1,997        | 4,359   |



### **Derived MOE Minimization**

- $SE(A + B + \cdots) = \sqrt{SE(A)^2 + SE(B)^2 + \cdots}$
- All things being equal, we prefer larger geographies.
- So, replace blockgroups with the largest areas: Currently limited to the State-County-Census Tract-Census Blockgroup hierarchy.
- Additionally, at each geographic level, use only one structural zero (the one with the highest MOE).

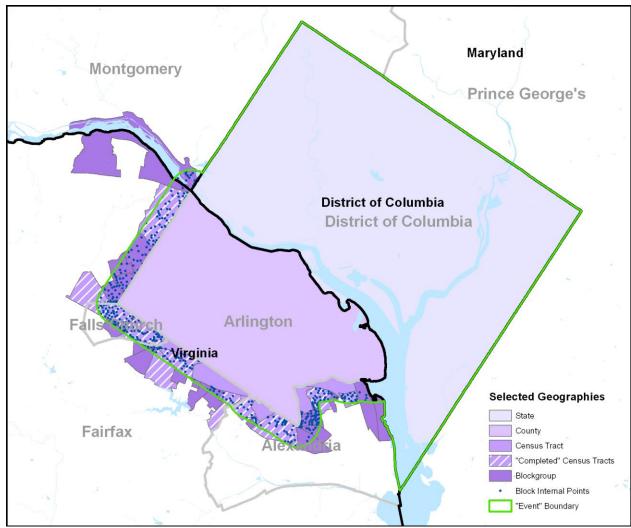


#### **MOE Min Outcomes**

| MOE Minimization for Flood Boundary from 3/25/2015 |                 |                |
|----------------------------------------------------|-----------------|----------------|
|                                                    | All Blockgroups | Combined Areas |
| Total Pop Estimate                                 | 181,573         | 181,573        |
| Derived MOE                                        | 3,381           | 1,647          |

| MOE Minimization for Snow Boundary from 3/5/2015 |                 |                |  |
|--------------------------------------------------|-----------------|----------------|--|
|                                                  | All Blockgroups | Combined Areas |  |
| Total Pop Estimate                               | 1,8013,344      | 1,8013,344     |  |
| Derived MOE                                      | 38,248          | 10,291         |  |

| MOE Minimization for Fire Boundary from 8/14/2012 |                 |                |
|---------------------------------------------------|-----------------|----------------|
|                                                   | All Blockgroups | Combined Areas |
| Total Pop Estimate                                | 1,997           | 1,997          |
| Derived MOE                                       | 422             | 422            |




# **One Version of the Algorithm**

- 1. Select all states that are wholly within the event boundary.
- 2. Select all counties that are wholly within the event boundary minus the states selected in #1.
- 3. Select all census tracts that are wholly within the event boundary minus the states selected in #1 minus the counties selected in #2.
- 4. Select all blockgroups that have at least one constituent census block with an IP inside the remainder of the boundary (event boundary minus the states selected in #1 minus the counties selected in #2 minus the census tracts selected in #3).
- Check whether, through the addition of blockgroups, a whole tract, county, or state has been created from its parts. If so, then substitute the larger area for its parts.



#### **Algorithm Example**





## Finally...

- This has been implemented for some ACS variables in one application with one method.
- Other methods for other purposes are possible (e.g. substituting places).
- Could be scaled to all ACS datasets and included with other applications/tools.



#### Thank You

- Matthew.Graham@census.gov
- http://onthemap.ces.census.gov/em.html
- http://lehd.ces.census.gov/
- Thanks to Jody Hoon-Starr for helping to prepare the ACS data extracts.

