Producing Synthetic Estimates of Children's Health and Well-Being for Local Areas

INFORM EMPOWER ADVANCE

PRESENTATION BY **BETH JAROSZ OF THE POPULATION REFERENCE BUREAU**

MAY 2015 POPULATION REFERENCE BUREAU | www.prb.org

Acknowledgement

This research was conducted with funding from and in partnership with the Child and Adolescent Health Measurement Initiative, now based in the Bloomberg School of Public Health at Johns Hopkins University in Baltimore, Maryland.

Overview

- Purpose
- Methodology
 - Data, process, and examples
 - Techniques to reduce error
 - Methods for evaluating the estimates
- Results
- Conclusions

What is a Synthetic Local Estimate?

- When data are available only for larger areas, how do we estimate local conditions?
 - Extend the patterns that exist in a larger region down to the local level
 - Called "estimates" because they are extrapolated (not observed)
 - Called "synthetic" because they are created by combining data for the "parent" geography with local population data

- National Survey of Children's Health provides state-level estimates of child health and well-being
- Extensive public health planning and policy occurs at the county- or city-level
- These estimates attempt to bridge that gap

The Broader Context

- Federal, state budgets squeezed
- Demands for better data at lower costs
- Declining response rates / privacy concerns
- Future → Greater reliance on administrative records and model-based estimates

26 Child Health Measures

Methodology: Data Sources

- 2011-2012 National Survey of Children's Health (NSCH)
 - State-level prevalence rates
 - 4 racial/ethnic categories
 - 4 family income categories
- 2010-2012 American Community Survey (ACS)
 - Local-level population data
 - 4 racial/ethnic categories
 - 4 family income categories

Methodology: Geography

NSCH prevalence rates for 50 states, District of Columbia, 4 Census Regions

Methodology: Geography

- ACS population estimates for cities and counties of population ≥100,000
 - 583 counties
 - 297 cities (excl. 3 college towns)
 - South Bend, IN (Notre Dame University)
 - Edison township, NJ (Rutgers University)
 - Murfreesboro, TN (Middle Tennessee State Univ.)
 - Wyoming special case:
 - No counties or cities met 100,000 population threshold in 2012
 - Combined counties of Albany and Laramie

Methodology: Estimation Process

Methodology: Estimation Formula

Local estimate =
$$\sum_{r,i=1}^{16} \left(p_{r,i} \frac{NSCHc_{r,i}}{NSCHp_{r,i}} \right)$$

OR

Local estimate =
$$\sum_{r,i=1}^{16} \left(\frac{p_{r,i}}{P} NSCHrate_{r,i} \right)$$

Where:

 $p_{r,i}$ = local population of a given race and income group within the age group of interest

 $NSCHc_{r,i}$ = number of cases in parent geography

 $NSCHp_{r,i}$ = population of parent geography

Example: Overweight/Obesity in Baltimore, MD

NSCH Prevalence Rate MARYLAND	0-99% FPL	100-199% FPL	200-399% FPL	400% FPL or Higher
Hispanic	50.0%*	45.7%*	36.2%*	23.8%*
White, non-Hispanic	40.9%*	33.6%*	24.1%	18.0%
Black, non-Hispanic	52.7%*	80.2%	36.3%	34.7%
Other, non-Hispanic	37.9%*	35.1%*	35.9%*	20.9%*

ACS Population Est. BALTIMORE	TOTAL	0-99% FPL	100-199% FPL	200-399% FPL	400% FPL or Higher
TOTAL	54,028	19,094	14,000	13,959	6,975
Hispanic	2,003	777	463	548	215
White, non-Hispanic	7,838	1,300	1,307	2,348	2,883
Black, non-Hispanic	41,534	16,310	11,532	10,335	3,357
Other, non-Hispanic	2,653	707	698	728	520

PRB | INFORM. EMPOWER. ADVANCE.

Example: Overweight/Obesity in Baltimore, MD

Est. Number of Overweight /Obese BALTIMORE	TOTAL	0-99% FPL	100-199% FPL	200-399% FPL	400% FPL or Higher
TOTAL	26,564	9,787	10,149	4,782	1,846
Hispanic	850	388	212	199	51
White, non-Hispanic	2,046	531	439	566	520
Black, non-Hispanic	22,775	8,600	9,253	3,756	1,166
Other, non-Hispanic	883	268	245	261	109

Baltimore overweight/obesity prevalence rate = 26,564 / 54,028

= 49% overweight or obese

Note: Differs from Maryland statewide rate (31.6%)

Methodology: Reducing the Effect of Sampling Error

- ACS: Drop cases with CV > 60 percent
- NSCH: "Reach up" to larger parent geography (e.g. region, instead of state) when NSCH rate based on fewer than 20 cases

Methodology: Evaluating the Estimates

- Proof of Concept #1: test synthetic estimation at the state level
 - Use region-level rates to develop synthetic state estimates
 - Compare with published state-level NSCH
 - Mean Absolute Percent Error (MAPE)
 - Mean Algebraic Percent Error (MALPE)

Evaluation: MAPE and MALPE for Region to State Synthetic Estimates

- 50 states and District of Columbia
- 4 Census Regions
- Synthetic method applied
 - Used Region prevalence rate and state population estimates

	Overweight & Obesity
U.S. Rate	31.3
Range	17.3
High (MS)	39.7
Low (UT)	22.4
MAPE	7.5
MALPE	1.5
Max Underestimate	-6.7
Max Overestimate	7.4
Nmbr States w/i 1pt	13
Percent within 1pt	25.5%

Difference Between Survey and Estimate for Overweight/Obesity

Methodology: Evaluating the Estimates

- Proof of Concept #2: Compare NSCH and Synthetic Estimates for Washington, D.C.
 - District of Columbia is a unique case
 - D.C. surveyed and reported as a state in NSCH
 - D.C. also a city and a county in synthetic estimates
 - Results suggest method yields reliable estimates
 - D.C. synthetic estimate incorporates ACS reweighting and state- and region-level NSCH

Evaluation: Compare Estimates for District of Columbia

Health Measure	Synth.	Publ.	Diff.	Health Measure	Synth.	Publ.	Diff.
Obesity/overweight	38.3	35.0	3.30	Vision screening	63.5	63.8	-0.30
CSHCN status	22.9	20.9	2.00	Developmental			
Status of children's				screening	27.5	N/A	N/A
teeth	74	72.6	1.40	Problems accessing			
Prematurity	91.2	89.6	1.60	specialist care	9.1	7.7	1.40
				School engagement	74.5	73.6	0.90
EBD problems	8.2	N/A	N/A	Grade repetition	85.2	84.4	0.80
Adequacy of				Missed school	94.4	94.6	-0.20
insurance	21.2	19.7	1.50	ACEs	27.4	24.7	2.70
Consistency of				Parental stress	14.1	14.2	-0.10
insurance	93.6	94.2	-0.60	Supportive			
Childcare affecting				neighborhoods	70.1	71.2	-1.10
employment	84.6	85.0	-0.40	Safe communities	72.5	72.6	-0.10
Preventive medical	90.2	89.8	0.40	Neighborhood	10	10	0.10
Preventive dental	17.5	17.7	-0.20	amenities	93.3	92.3	1.00
Medical home	48.8	49.7	-0.90	Resilience 0-5	66.5	N/Δ	N/A
Received needed					50.5		
mental health care	4.2	5.6	-1.40	Resilience 6-17	53.7	N/A	N/A
				Physical activity	62.2	59.5	2.70

Results: Obesity by County, Atlanta

Discussion: Model Strengths

- Model based on sound estimation techniques
- Process is clear and replicable
- Method attempts to mitigate effect of sampling error
 - "Reaches up" to larger parent geography when state rate is unstable
 - Focuses on areas with relatively large populations
 - Excludes population groups with large CV

Discussion: Potential Source of Error

- Technique may compound sampling error
- State-level prevalence (by race/income) may not be characteristic of local areas
- Unable to "ground truth" model against county- and city-level data from NSCH or other sources

Conclusions and Next Steps

Conclusions:

- Method useful, but has limitations
- Wide range of possible applications

Next Steps:

- Compare synthetic estimates with special tabulation of NSCH data for selected counties
- Produce data for rural areas

MARK MATHER

Associate Vice President

U.S. Programs

Population Reference Bureau

MMather@prb.org

@MarkSMather

BETH JAROSZ

Research Associate U.S. Programs Population Reference Bureau BJarosz@prb.org @DataGeekB