Matt Schroeder and Todd Graham
Metropolitan Council (Twin Cities)
ACS Data in Population Estimates and Forecasts: Practical Considerations and Extensions

May 12, 2017
ACS Data Users Group

Estimates overview

$\left.\begin{array}{c}\text { How many } \\ \text { housing units? }\end{array} \longrightarrow \begin{array}{c}\text { How many } \\ \text { households? }\end{array} \longrightarrow \begin{array}{c}\text { How many } \\ \text { people? }\end{array}\right]$

| Housing units |
| :---: | :---: | :---: |
| in 2010 |, | Average |
| :---: |
| household |
| size |

Estimating occupancy rates

Challenge \#1: ACS five-year estimates may not reflect current housing market conditions

Solution: Apply region-wide adjustments to approximate current housing market conditions

ACS 2011-2015

ACS 2015

2016 estimate

Estimating occupancy rates

Challenge \#2: ACS sampling error may yield unreliable occupancy rates Solution: Reconcile each community's ACS-based occupancy rate with occupancy rates from complete-count data

Lower the weight when: Mpls. New Trier

Final	Margins of error are wider	35%	0%	
	2010 Census	Large change in housing stock mix	5%	93%
	2010 Census w/ USPS trend	Tract geography does not fit city borders well	60%	7%

Estimating average HH size

Challenge \#3: ACS sampling error may yield unreliable PPH
Solution: Reconcile ACS-based PPH figures with PPH from complete-count data

| | Lower the weight when: | | | Mpls. |
| :---: | :--- | :--- | :---: | :---: | New Trier

Forecasts overview

Total region population

- Regional economic model \rightarrow migration
- Natural increase

Local forecasts

- 2,485 Transportation Analysis Zones (TAZs)
- Land use model

Elaborating on forecasts: PUMS

Forecast model produces households by:

Size	Race	Householder age			
		$15-34$	$35-49$	$50-64$	$65+$
$\mathbf{1 - 2}$	White				
	Of color				
	White				
	Of color				

Our transportation planners need:

- Households by:
- Size (8 categories)
- Income (4 categories)
- People by:
- Gender (M/F)
- Employment (FT/PT/None)
- Student status (Y/N)
- Age (10 categories)

ACS PUMS distributions

Elaborating on forecasts: PUMS

For example, we multiply these household forecasts:

By these PUMS percentages of such households that have an income under $\$ 35 \mathrm{~K}$:

Size	Race	Householder age			
		$15-34$	$35-49$	$50-64$	$65+$
$\mathbf{1 - 2}$	White	20	25	30	40
	Of color	40	40	20	10
	White	30	40	20	10
	Of color	50	40	10	5

Size	Race	Householder age			
$1-2$	White	15%	20%	10%	10%
	Of color	20%	20%	10%	20%
	White	10%	10%	10%	10%
	Of color	16%	15%	20%	20%

Elaborating on forecasts: PUMS

And get these numbers of households with income under $\$ 35 \mathrm{~K}$:

Size	Race	Householder age				62 total households with
		15-34	35-49	50-64	65+	income under \$35K in
	White	3	5	3		this TAZ
1-2	Of color	8	8	2	2	Repeat for other income
	White	3	4	2	1	categories, then all other
	$\begin{aligned} & \text { Of } \\ & \text { color } \end{aligned}$	8	6	2	1	

Refinements to elaborations

- Raking to the forecasted age distribution (reflecting an aging population)
- Implement age-specific distributions for employment and student status (also reflecting an aging population)
- Have to make sure that the resulting household size distribution multiplies out to the population in households!

Refinements to elaborations

Let's say our forecasts yield 50 households and 150 people in households in a TAZ. PUMS breakdown fields:

(A) Household size	(B) Households (broken down with PUMS)	Implied people in households $(\mathbf{A} \times \mathbf{B})$
1 person	5	5
2 people	13	26
3 people	10	30
4 people	15	60
5 people	4	20
6 people	2	12
7 people	1	7
8+ people	0	0
Total	$\mathbf{5 0}$	$\mathbf{1 6 0}$

The PUMS distributions may create household sizes that are inconsistent with the population in households!

Refinements to elaborations

Shuffle households to have them multiply out to 150 people:

(A) Household size	(B) Households (broken down with PUMS)	(C) Households (adjusted from PUMS)	(D) Implied people in households (A * C)		
1 person	5	6	5	6	$(+1)$
2 people	13	13	26		
3 people	10	10	30		
4 people	15	15	60		
5 people	$4-1$	3	20	15	(-5)
6 people	2	2	12		
7 people	1	1	7		
8+ people	0	0	0		
Total	50	50	160	156	(-4)

Refinements to elaborations

Shuffle households to have them multiply out to 150 people:

(A) Household size	(B) Households (broken down with PUMS)	(C) Households (adjusted from PUMS)	(D) Implied people in households $(A \times C)$
1 person	5	6	6
2 people	$13 \quad \longrightarrow+4$	17	2634 (+8)
3 people	10-2	8	$30 \quad 24$ (-6)
4 people	15-2-	13	6052 (-8)
5 people	4	3	15
6 people	2	2	12
7 people	1	1	7
8+ people	0	0	0
Total	50	50	156150 (-6)

Questions?

Contact: Matt.Schroeder@metc.state.mn.us

