Matt Schroeder and Todd Graham Metropolitan Council (Twin Cities)

ACS Data in Population Estimates and Forecasts: Practical Considerations and Extensions

May 12, 2017

ACS Data Users Group

2

How many **people**?

Estimating occupancy rates

Challenge #1: ACS five-year estimates may not reflect current housing market conditions

Solution: Apply region-wide adjustments to approximate

current housing market conditions

2016 estimate

Estimating occupancy rates

Challenge #2: ACS sampling error may yield unreliable occupancy rates

Solution: Reconcile each community's ACS-based occupancy rate with occupancy rates from complete-count data

Lower the weight when:	Mpls.	New Trier
Margins of error are wider	35%	0%
Large change in housing stock mix	5%	93%
Tract geography does not fit city borders well	60%	7%

		Lower the weight when:	Mpls.	New Trier
	ACS	Margins of error are wider	35%	0%
rate	2010 Census	Large change in housing stock mix	5%	93%
estimate	2010 Census w/ USPS trend	Tract geography does not fit city borders well	60%	7%

Estimating average HH size

Challenge #3: ACS sampling error may yield unreliable PPH Solution: Reconcile ACS-based PPH figures with PPH

	Lower the weight when: Mpls. New Tr				
	ACS	Margins of error are wider	73%	0%	
Final average household	2010 Census		9%	33.3%	
size	size 2000-2010 trend Large	Large change in housing stock mix	9%	33.3%	
			9%	33.3%	

from complete-count data

Forecasts overview

Total region population

- **Regional economic model** \rightarrow migration
- Natural increase

- Local forecasts
- Zones (TAZs)
- Land use model

2,485 Transportation Analysis

Elaborating on forecasts: PUMS

Forecast model produces households by:

Size	Race	Householder age				
		15-34	35-49	50-64	65+	
1 0	White					
1-2	Of color					
2.	White					
3+	Of color					

need:

- Households by: – Size (8 categories)

 - Income (4 categories)
- People by:

 - Gender (M/F) Employment (FT/PT/None) Student status (Y/N) Age (10 categories)

ACS PUMS distributions

Our transportation planners

Elaborating on forecasts: PUMS

For example, we multiply these household forecasts: an income under \$35K:

Size	Race	Householder age			Size	Race	Но	useho	older a	ge	
		15-34	35-49	50-64	65+			15-34	35-49	50-64	65+
1 2	White	20	25	30	40	1 0	White	15%	20%	10%	10%
1-2	Of color	40	40	20	10	1-2	Of color	20%	20%	10%	20%
2.	White	30	40	20	10	2.	White	10%	10%	10%	10%
3+	Of color	50	40	10	5	3+	Of color	16%	15%	20%	20%

By these PUMS percentages of such households that have

Elaborating on forecasts: PUMS

And get these numbers of households with income under \$35K:

Size	Race	Householder age					
		15-34	35-49	50-64	65+		
1 0	White	3	5	3	4		
1-2	Of color	8	8	2	2		
2.	White	3	4	2	1		
3+	Of color	8	6	2	1		

- this TAZ
- characteristics

62 total households with income under \$35K in

Repeat for other income categories, then all other

- Raking to the forecasted age distribution (reflecting an aging population)
- Implement age-specific distributions for employment and student status (also reflecting an aging population)
- Have to make sure that the resulting household size distribution multiplies out to the population in households!

Let's say our forecasts yield 50 households and 150 people in households in a TAZ. PUMS breakdown vields:

(A) Household size	(B) Households (broken down with PUMS)	Implied people households (A × B)
1 person	5	5
2 people	13	26
3 people	10	30
4 people	15	60
5 people	4	20
6 people	2	12
7 people	1	7
8+ people	0	0
Total	50	160 -

e in

The PUMS distributions may create household sizes that are inconsistent with the population in households!

Shuffle households to have them multiply out to 150 people:

(A) Household size			(C) Households (adjusted from PUMS)
1 person	5	+1	6
2 people	13		13
3 people	10		10
4 people	15		15
5 people	4 -1		3
6 people	2		2
7 people	1		1
8+ people	0		0
Total	50		50

(D) Implied people in households $(A \times C)$ 5 6 (+1) 26 30 60 20 15 (-5) 12 7 0 160 156 (-4)

Shuffle households to have them multiply out to 150 people:

(A) Household size	(B) Households (broken down with PUMS)	(C) Households (adjusted from PUMS)
1 person	5	6
2 people	13 →+4	17
3 people	10 -2	8
4 people	15 -2 —	13
5 people	4	3
6 people	2	2
7 people	1	1
8+ people	0	0
Total	50	50

(D) Implied people in households $(A \times C)$ 6 26 34 (+8) 24 (-6) 30 52 (-8) 60 15 12 7 0 156 150 (-6)

Questions?

Contact: Matt.Schroeder@metc.state.mn.us

