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Solving the Mobility Problem: means 
helping citizens get around cheaply, 
efficiently, safely

Cities are installing sensors to monitor 
flows of many kinds of traffic:

• Automobile

• Transit

• Bikers / Pedestrian

BUT: Having a flood of new data doesn’t 
always clarify things…

The solution? Connecting demographic 
baseline data to sensor data can help 
derive meaning from this welter of 
information.

The Bottom Line: In this presentation 
we’ll show how we can use dimensionality 
reduction techniques and spatial overlays 
to connect ACS data to bike counter data 
from the Washington DC region.

Our method provides a clearer story from 
the bike counter data than is possible 
without ACS.

As Cities get ‘Smarter’, Sensors Proliferate

“The Instrumented Environment”

Picture credits: Bikearlington.com and http://www.eco-
compteur.com/en/products/zelt-range/urban-zelt



Context: Bike Commuting and Bike Count Sensors

Washington, DC Region

• Tops nation in traffic congestion*

• Small but growing cadre of bike 
commuters**

• 2010: 5.0%
• 2011: 5.41%
• 2012: 6.22%
• 2013: 6.91%
• 2014: 7.39%
• 2015: 7.87%

• Growing Network of Bike Trails

• Increasing use of Sensors

• Bike trail usage data provided by 
regional partners (API)

• But how to make sense of all 
the data generated by these 
sensors?

• Build on prior research:

• Weekend vs. weekday patterns 
(Jake VanderPlas, Seattle)

• Commuter vs. Recreational 
Counters (Fraser McLaughlin, 
Eco-Counter)

Sources: 

* Texas Transportation Institute Urban Mobility Scorecard

**ACS 5-year estimates, B08301 Means of Transportation 
to Work, DC MSA



Data and Methods

Overview

Data

• Bike counters: 45 sensors collecting 
observations every hour for 3+ years

• (34,265 counter X days)

• ACS Demographic variables (2015 ACS 5-
year estimates, census tract geography)

Methods

• Dimensionality reduction through Principal 
Component Analysis (PCA)

• Spatial Correlation of PCA factors to ACS 
variables

Pull data from 
bikearlington.com 

api

1.4 million 
observations 

(hours X counters 
X directions)

Principal 
Component 

Analysis

Keep top three 
factors

Spatial correlation 
with ACS

Find Meaning!



Methods Part 1: Dimensionality Reduction of Sensor Data

Principal Component Analysis and Visualization

Follow method of VandenPlas for 
Seattle biking patterns: 

• Convert each sensor-day to a 24-
dimensional vector, 1 dim per 
hour

• Principal Component analysis 
reveals 3 significant factors 
explain 

−Factor 1: Weekday commuting 
usage pattern

−Factor 2: Recreational 
(afternoon) usage

−Factor 3: High late-night (night 
shift?) usage

−Factor 4: 3-6 AM peak

• Visualize sensors in factor1 X 
factor2 space

https://jakevdp.github.io/blog/2015/07/23/learning-seattles-work-habits-from-bicycle-counts/


Methods Part 2: Spatial overlay of sensors with ACS data

ACS data selection: 2015 5-year census 
tract data for:

• Bike commuter modal share

• Commute characteristics

• Vehicle ownership

• Household size

• Age

• Education level

• income

Select tracts within 1-mile radius of 
counter

Average ACS variables over list of 
tracts for each sensor

Calculate Pearson product-moment 
correlations between 3 PCA factors 
and ACS averages

Sample Spatial Correlation with Bike Sensor PCA Factors



Methods Part 3: Analysis and 
Results
Identify significant* 
correlates

Commuter Segment correlates 
with:

• Areas with high bike commute share 
and transit use

• Areas with fewer vehicles

Recreational User Segment 
correlates with:

• Transit use

• Longer commutes

• Younger residents

• Smaller households

Late-night User Segment correlates 
with:

• Younger residents

• Smaller households

• Lower incomes

• Longer commutes
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Biking Share +

Transit Share + +

Vehicles Available -

Travel Time to 
Work

+ +

Median Age - -

HH Size - -

High Income 
Share

-

Work in County 
Share

-

*Correlations significant at the level of p < .05



Discussion:

Results and Future 
Research

Generalizable Uses:

• Make outlier detection of sensors more 
robust

• Predict usage patterns of points on trails

• Improve trail signage and lighting based 
on 3 user segments

Future research:

• Refine spatial correlation methods

• Rationalize choice of buffer distance

• Weight demographic variable averages 
using distance decay

• Use CTPP origin-destination data in 
addition to ACS

• Extend analysis to more complex traffic 
flows
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