ESTIMATING INTERCENSAL HOUSEHOLD SIZE IN NYC'S NEIGHBORHOODS

2019 ACS Data User Conference

Annette Jacoby, Joseph Salvo, Peter Lobo

Goal

Objective

- Housing Unit Method for population estimation:
 Occupied HU x PpH?
- ACS PpH values too unreliable
 Swanson, David A. (2010): "Substantial massaging needs to be done to iron out the temporal instabilities and large variances found for person per household values in many areas."
- Develop intercensal household size for reliable population estimates at sub-borough levels that reflect geodemographic segmentation
 - Estimates of persons per household (PpH) for New York City's 188 Neighborhood Tabulation Areas (NTAs) for 2013-2017 period

A regression-based approach for intercensal PpH

- "At least for some states and counties, regression models are capable of producing more precise and less biased PPH estimates than those produced by more common methods" (West, Ahmed, Bruce, & Judson, 2009)
- Regression-based approach
 - Employ demographic rather than a statistical perspective
 - PpH varies in response to socio-demographic neighborhood characteristics or "symptomatic indicators"

NYC Context

Step 1. Two-Panel Difference Model

$$\mathsf{PpH}_{i,2010} \ = \beta_0 \ + \ \mathsf{PpH}_{i,2000} + \beta_1 \frac{X_{i,2010}^{(1)} - X_{i,2000}^{(1)}}{X_{i,2000}^{(1)}} + \cdots \beta_9 \frac{X_{i,2010}^{(9)} - X_{i,2000}^{(9)}}{X_{i,2000}^{(9)}} + \epsilon_i$$

➤ Data and Variables for 2000-2010 Change

Elderly %

Head of Non-Family Household under 65 %

Non-Hispanic White %

Non-Hispanic Black %

Non-Hispanic Asian %

Hispanic %

Renter-Households %

Housing Additions 2000-2010

Birth Rates

Step 1. Two-Panel Difference Model

$$\mathsf{PpH}_{i,2010} \, = \beta_0 \, + \, \mathsf{PpH}_{i,2000} + \beta_1 \frac{X_{i,2010}^{(1)} - X_{i,2000}^{(1)}}{X_{i,2000}^{(1)}} + \cdots \beta_9 \frac{X_{i,2010}^{(9)} - X_{i,2000}^{(9)}}{X_{i,2000}^{(9)}} + \epsilon_i$$

➤ Data and Variables for 2000-2010 Change

Elderly %

Head of Non-Family Household under 65 %

Non-Hispanic White %

Non-Hispanic Black %

Non-Hispanic Asian %

Hispanic %

Renter-Households %

Housing Additions 2000-2010

Birth Rates

Step 1. Two-Panel Difference Model

$$\mathsf{PpH}_{i,2010} = \beta_0 + \mathsf{PpH}_{i,2000} + \beta_1 \frac{X_{i,2010}^{(1)} - X_{i,2000}^{(1)}}{X_{i,2000}^{(1)}} + \cdots \beta_9 \frac{X_{i,2010}^{(9)} - X_{i,2000}^{(9)}}{X_{i,2000}^{(9)}} + \epsilon_i$$

Step 2. Projecting Household Size for 2013-2017

• The coefficients $\mbox{$\mathbb{G}_1$}$ - $\mbox{$\mathbb{G}_9$}$ are applied to housing and population changes from 2008-2012 to 2013-2017

Step 1. Two-Panel Difference Model

Step 2. Projecting 2014 Household Size

 The coefficients ß1 - ß9 are applied to housing and population changes from 2008-2012 to 2013-2017

OLS Regression Results

	Unstandardized Coefficients		Standardized Coefficients	
R ² : 0.985	В	Std. Error	Beta	Sig.
(Constant)	2.682	.008		.000
РрН	.980	.011	.981	.000
∆ Elderly 2000-2010	028	.003	101	.000
∆ Hispanic 2000-2010	.006	.001	.069	.000
∆ Asian 2000-2010	.008	.001	.081	.000
∆ Birthrate 2000-2010	.003	.002	.013	.174
∆ Renter 2000-2010	.004	.002	.028	.013
∆ Head of Non-Family Household under 65	-1.987	.159	141	.000

Predicted and Actual PpH

Error Percentages 1

MALPE: 0.012 MAPE: 1.152

Error Percentages 2

MALPE: 0.010 MAPE: 1.147

^{*} The 2009 to 2017 axis represents the end-points for 5-year periods.

Conclusion

- Determine if the error distribution is strongly influenced by outliers and what to do with outliers
 - Statistical cutoffs to identify extreme outliers
- Overall, very predictive model
- No one perfect method for population estimates instead, different procedures need to be used in conjunction

Contact:

Annette Jacoby

<u>ajacoby@planning.nyc.gov</u>

