Evaluating the reliability of ACS data for transportation planning

Addison Larson Delaware Valley Regional Planning Commission ACS Data Users Conference 2019-05-15

ødvrpc

Starting point

Analysis of every residence-based table without crosstabulations in the latest CTPP release for five geographies

A101100

Total population (All persons)

Tract

Descriptive statistics

Table Minimum 0

Table

1: Summary of Estimates		timates	Tab	le 2: Sum	mary of	CVs	Tabl	e 1: Sum	nary of l	Estima	tes	Tal	ole 2: Sum	mary of	CVs
Median	Mean	Maximum	Minimum	Median	Mean	Maximum	Minimun	n Media	n Mear	n Ma	aximum	Minimum	Median	Mean	Maximum
3965	4134	11885	0.13	4.45	5.65	151.98	()	0 1	1	150	15.2	100	95.31	319.15
CV	Count		Hi	Table 4: H	ligh CVs ag Cou	i int		CV	Cour	nt		Н	igh CV Fl	ag Cou	int
0-15	1361		Hi	igh CV Fla	ag Cou	int		15.1-3	0	4		N	0	2	278
10.1-30	2		Ye	o es	13	10		30.1-6 60.1+	286	4		Y	es	28	862
00.1-00	and the														

Spatial distribution of CVs

A102108

9:30 a.m. to 9:44 a.m.

TAZ

Descriptive statistics

spatial distribution of CVs	Spatial	distribution	of	CVs
-----------------------------	---------	--------------	----	-----

Outline

- Introduction to the CTPP
- Margins of error and why they matter
- CTPP coefficients of variation (CVs) by:
 - Table type
 - Geography
 - Variable detail
- A caveat on local context
- Recommendations, resources, references

Study area

Census Transportation Planning Products

- Special tabulation of the ACS for transportation and planning purposes
- Unique table types, geographies, and variables
- Data based on 2012-2016 ACS 5-Year Estimates released 2019-04-02

CTPP table types

Census Tract 4.02

- Residence-based
- Workplace-based
- Flows

Example: No. of workers, Census Tract 4.02

CTPP geographies

TAD

Tract

TAZ

PUMA

CTPP variables

Estimated bicycle commuters by census tract Black tract is destination

At right: Commuting flows by means of transportation

Other examples:

- Travel time by means of transportation
- Time arriving at work

Ødvrpc Tract-level analysis of CTPP Flows Table A302103, City of Philadelphia.

MOEs make a difference

Using the previous slide's example:

Origin	Estimate	MOE	CV
Tract 20	50	65	79%
Tract 152	50	73	89%
Tract 41.02	35	58	101%
Tract 140	30	37	75%
Tract 28.01	30	27	55%
Tract 30.02	30	37	75%
Tract 16	30	37	75%
Tract 24	30	38	77%

*w***dvrpc** Tract-level analysis of CTPP Flows Table A302103, City of Philadelphia.

CVs and the CTPP

- What's an "acceptable" CV? Rules of thumb:
 - 10-12% (Citro & Kalton, 2007)
 - Up to 15% (Francis et al., 2012)
- Choices in table type, geography, and variable detail simultaneously affect CVs
- Most of these choices apply to ACS data as well

CTPP CVs by table type

• Use Flows tables with caution

CV	Residence	Workplace	Flows
0-15%	366 (81%)	380 (81%)	1,041 (30%)
15.1-30%	51 (11%)	43 (9%)	525 (15%)
30.1-60%	23 (5%)	31 (7%)	595 (17%)
60.1+%	10 (2%)	14 (3%)	1,322 (38%)
Total obs.	450	468	3,483

CTPP CVs by geography

- Estimates at small geographies are often less reliable
- Selecting tract or TAZ carries reliability penalties

CV	County	PUMA	TAD	Tract	TAZ
Min	0.31%	0.75%	0.85%	3.09%	3.34%
Med	0.42%	1.01%	1.51%	6.93%	14.1%
Mean	0.45%	1.19%	1.63%	8.68%	23.62%
Max	0.64%	2.29%	3.37%	182.37%	218.84%

CTPP CVs by variable detail

- Use cross-tabulations with caution
- Below: zero-car households v. zero-car households × no. of workers in household

CV	ZC HH	ZC HH with 1 worker
Min	6.73%	11.85%
Med	16.59%	33.25%
Mean	22.06%	41.86%
Max	151.98%	319.15%

ødvrpc

Tract-level analysis of CTPP Residence-based Table A112310, No. of workers in household by vehicles available by household income in the past 12 months, City of Philadelphia.

CTPP CVs by variable detail (cont.)

Using the previous slide's example:

	Estimate, zero-car households						
CV	(–∞, –1.5 <i>SD</i>]	(–1.5 <i>SD</i> , –0.5 <i>SD</i>]	(–0.5 <i>SD</i> , 0.5 <i>SD</i>]	(0.5 <i>SD</i> , 1.5 <i>SD</i>]	(1.5 <i>SD</i> , ∞)		
0-15%	0	5	56	61	30		
15.1-30%	0	79	86	14	2		
30.1-60%	0	34	0	0	0		
60.1+%	14	3	0	0	0		
	Estimate, zero-car households with one worker						
0-15%	0	0	0	1	4		
15.1-30%	0	4	60	55	27		
30.1-60%	0	72	99	6	0		
60.1+%	18	36	2	0	0		

ødvrpc

Tract-level analysis of CTPP Residence-based Table A112310, No. of workers in household by vehicles available by household income in the past 12 months, City of Philadelphia.

A caveat on context

 Datasets with low reliability overall *might* be adequately reliable in your particular study area or for your particular research question

Tract-level analysis of CTPP Residence-based Table A112310, No. of workers in household by vehicles available by household income in the past 12 months, City of Philadelphia.

Recommendations

- Careful selection of table type, geography, and variable
- Collapse geographies and/or subgroups – Understanding and using ACS data (2018)
- Cartographic choices
 - Francis et al. (2012)
 - Map reliability calculator
- Custom aggregate geographies
 NYC Neighborhood Tabulation Areas
- Data-driven regionalization
 - Spielman & Folch (2015)

Resources

- Paper: Evaluating the reliability of ACS data for *transportation planning* [link]
- Online Appendix*: *Summary* of data reliability for residence-based tables in the 2016 CTPP release [link]
- Interactive map reliability calculator [link]
- Email me: alarson@dvrpc.org

Map Classification Error Calculator

Questions? Click here for a how-to.

Upload two-column CSV file, where first column is estimate and second is MOE:

Browse	vse A112109_5_tract.csv				
	Upload complete				
File has a header					
Include estimates of 0 in error calculations					

Select number of classes:

7 -

Error threshold (Default is 10%):

10

. ,	2	
10	3	
	4	
ustom comma-delimited breaks (Optional):	5	
500 1000 1500 2000 2500 3000 3500	6	
000,1000,1000,2000,2000,0000,0000	-	

Here's the data you uploaded

Custom comma-delimi

Min.	1st Qu.	Median	Mean 3r	d Qu.	Max.	
0	1060	1460	1524	1930	4035	

User-Defined Break Values

500 1000 1500 2000 2500 3000 3500

```
Equal Interval Break Values
```

576.429 1152.857 1729.286 2305.714 2882.143 3458.571

Jenks Break Values

525 990 1340 1705 2110 2600

Quantile Break Values

Summary of Expected E

Equal Interval Breaks

Classes	Overall Error
2	OK: 2.22%
3	OK: 3.89%
4	OK: 4.87%
5	OK: 5.21%
6	OK: 6.76%
7	OK: 7.81%

Standard Deviation Breaks

Classes	Overall Error
2	NA
3	OK: 4.78%
4	NA
5	OK: 6.61%
6	NA
7	OK: 6.89%

Error by Number of Clas

Select a number of classes to see detaile

Equal Interval Breaks

Overall Expected Classification Error OK

7.805

Expected Error By Class OK

		Lower	Bound	Error	Upper	во
Class	1			0.000		
Class	2			1.104		

References

- American Association of State Highway and Transportation Officials. (2019). 2012-2016 5-Year CTPP. Retrieved 2019-04-12, from <u>https://ctpp.transportation.org/2012-2016-5-year-ctpp</u>
- 2. Citro, C. F., & Kalton, G. (Eds.). (2007). *Using the American Community Survey: Benefits and challenges*. Washington, DC: National Academies Press.
- 3. Francis, J., Vink, J., Tontisirin, N., Anantsuksomsri, S., & Zhong, V. (2012). *Alternative strategies for mapping ACS Estimates and error of estimation*. Retrieved 2019-04-18, from <u>https://pad.human.cornell.edu/papers/index.cfm</u>
- 4. New York City Department of City Planning. (n.d.). *Map reliability calculator*. Retrieved 2019-04-18, from <u>https://www1.nyc.gov/site/planning/data-maps/nyc-population/geographic-reference.page</u>
- 5. Spielman, S. E., & Folch, D. C. (2015). Reducing uncertainty in the American Community Survey through data-driven regionalization. *PLOS One, 10*(2), e0115626.
- 6. United States Census Bureau. (2018). *Understanding and using American Community Survey data: What all data users need to know*. Retrieved 2019-04-20, from <u>https://www.census.gov/programs-surveys/acs/guidance/handbooks/general.html</u>

Source tables for CVs by table type

Description	Residence	Workplace	Flows	
Total workers	A102101	A202100	A302100	
Age of worker	A102102	A202101	B302101	
Industry	A102105	A202104	B302102	
Means of transportation	A102106	A202105	A302103	
Travel time	A102110	A202113	B302106	
	Universe: Workers 16 years and over			

Universe: Workers 16 years and over