PRB INFORM EMPOWER ADVANCE

# Creating custom multiyear ACS estimates using 1-year data from American FactFinder Tables

Alicia VanOrman, Research Associate

#### Overview

- Background and purpose
- Methods
- Results
- Accuracy and reliability

# Why create custom multiyear ACS estimates?

- Discontinuation of 3-year data products
- Consistency with prior estimates (though not comparable)
- More reliable estimates for smaller geographies or subgroups than 1-year ACS data

# How to create custom multiyear estimates using tables from FactFinder

- Similar to methods used for deriving estimates and margins of error for aggregated counts and proportions
- Aggregate across years of data, instead of across geographies or subgroups
- Limited to geographies in 1-year ACS data
  - Areas with populations over 65,000
- Estimates can be calculated without statistical software

#### Estimate multiyear counts

- 1. Obtain each 1year estimate
- 2. Sum across years to create an aggregate estimate



3. Divide by the number of years

#### **Estimate multiyear counts**

#### **Black or African American Children in Colorado**

| Year | # of children who are living in poverty |
|------|-----------------------------------------|
| 2011 | 18,467                                  |
| 2012 | 25,123                                  |
| 2013 | 17,268                                  |

Data come from Table C17001B for Colorado

$$\hat{X}_{my} = \frac{\hat{X}_{2011} + \hat{X}_{2012} + \hat{X}_{2013}}{3}$$

$$=\frac{18,467+25,123+17,268}{3}$$

$$=\frac{60,858}{3}$$

$$= 20,286$$

#### **Estimate multiyear MOE for counts**

- 1. Obtain the MOE for each 1-year estimate
- 2. Square each 1-year MOE
- 3. Sum the squared MOEs
- 4. Take the square root of the sum of the squared MOEs
- 5. Divide by the number of years

$$MOE_{my\_c} =$$



#### **Estimate multiyear MOE for counts**

#### **Black or African American Children in Colorado**

| Year | 1-year MOE for # of children who are living in poverty |
|------|--------------------------------------------------------|
| 2011 | 3,179                                                  |
| 2012 | 3,352                                                  |
| 2013 | 2,610                                                  |

Data come from Table C17001B for Colorado

$$MOE_{my\_c}$$

$$= \frac{\pm \sqrt{(MOE_{2011})^2 + (MOE_{2012})^2 + (MOE_{2013})^2}}{3}$$

$$= \frac{\pm \sqrt{(3,179)^2 + (3,352)^2 + (2,610)^2}}{3}$$

$$= \frac{\pm \sqrt{28,154,045}}{3}$$

$$= \frac{\pm 5,306}{3}$$

 $= \pm 1,769$ 

#### **Estimate multiyear proportions**

- 1. Obtain each 1-year estimate for the numerator
- 2. Sum together to create an aggregate numerator
- 3. Repeat steps #1 and #2 for the denominator
- 4. Divide the aggregate numerator by the aggregate denominator

$$\hat{p}_{my_p} = \frac{(\hat{X}_{y1}^{num} + \hat{X}_{y2}^{num} + \hat{X}_{y3}^{num})}{(\hat{X}_{y1}^{denom} + \hat{X}_{y2}^{denom} + \hat{X}_{y3}^{denom})}$$

#### Estimate multiyear proportions

#### **Black or African American Children in Colorado**

| Year | # who are<br>living in<br>poverty | # of<br>children |
|------|-----------------------------------|------------------|
| 2011 | 18,467                            | 50,029           |
| 2012 | 25,123                            | 61,126           |
| 2013 | 17,268                            | 51,931           |

Data come from Table C17001B for Colorado

$$\hat{p}_{my\_p}$$

$$=\frac{(\hat{X}_{2011}^{num}+\hat{X}_{2012}^{num}+\hat{X}_{2013}^{num})}{(\hat{X}_{2011}^{denom}+\hat{X}_{2012}^{denom}+\hat{X}_{2013}^{denom})}$$

$$= \frac{(18,467 + 25,123 + 17,268)}{(50,029 + 61,126 + 51,931)}$$

$$= .373$$

#### **Estimate multiyear MOE for proportions**

- Obtain the multiyear MOE for the numerator and denominator
- 2. Square the MOEs, square the derived proportion
- 3. Multiply the squared MOE for the denominator by the squared proportion
- 4. Subtract the result of #3 from the squared MOE for the numerator
- 5. Take the square root of the result of #4
- 6. Divide the result of #5 by the denominator



#### Estimate multiyear MOE for proportions

#### **Black or African American** Children in Colorado

| Year  | # in<br>poverty | # of<br>children |
|-------|-----------------|------------------|
| 2011  | 18,467          | 50,029           |
| (moe) | (3,179)         | (4,860)          |
| 2012  | 25,123          | 61,126           |
| (moe) | (3,352)         | (4,878)          |
| 2013  | 17,268          | 51,931           |
| (moe) | (2,610)         | (3,975)          |

Data come from Table C17001B for Colorado

$$MOE_{my\_p}$$

$$=\frac{\pm\sqrt{(MOE_{my\_ac}^{num})^2-[\hat{p}^2*(MOE_{my\_ac}^{denom})^2]}}{\hat{X}_{my\_c}^{denom}}$$

$$=\frac{\pm\sqrt{5,306^2-(.373^2*7,951^2)}}{50,029+61,126+51,931}$$

$$=\frac{\pm\sqrt{28,153,627}}{163,086}$$

$$= .027$$

## Comparing Census and custom 3-year estimates of number of children in poverty in CO, 2011-13



## Comparing Census and custom 3-year estimates of percent of children in poverty in CO, 2011-13



## Accuracy

- Custom estimates are similar to estimates from multiyear tables in FactFinder BUT are not the same
  - Census Bureau reweighting methods
- Comparing estimate of child poverty all states and racial/ethnic groups
  - Custom estimates ranged from <.01% to 8% different than estimates from tables in Fact Finder
  - Larger differences for smaller geographies or subgroups

### Reliability

Percent of children living in poverty in Colorado

|                  | 2013/1-year A/CS |      |       | 2011-2   | 2011-2013 3-year data |               |       | Custom 2011-2013<br>estimates |      |       |
|------------------|------------------|------|-------|----------|-----------------------|---------------|-------|-------------------------------|------|-------|
|                  | Estimate         | MOE  | CV    | Estimate | МОЕ                   | T             | CV    | Estimate                      | МОЕ  | CV    |
| American         |                  |      |       |          |                       | V             |       |                               |      |       |
| Indian           | 27.33            | 9.14 | 20.33 | 35.89    | 5.39                  | V             | 9.14  | 34.59                         | 4.95 | 8.71  |
| Asian and        |                  |      |       |          |                       | V             |       |                               |      |       |
| Pacific Islander | 10.56            | 2.87 | 16.54 | 12.26    | 2.44                  | ı             | 12.09 | 11.85                         | 2.11 | 10.85 |
| Black or African |                  |      |       |          |                       | L             |       |                               |      |       |
| American         | 33.25            | 4.33 | 7.92  | 37.41    | 2.54                  | L             | 4.13  | 37.32                         | 2.70 | 4.39  |
| Hispanic or      |                  |      |       |          |                       | L             |       |                               |      |       |
| Latino           | 29.46            | 1.63 | 3.36  | 30.83    | .92                   | ٨             | 1.82  | 30.57                         | .98  | 1.95  |
| Non-Hispanic     |                  |      |       |          |                       | Λ             |       |                               |      |       |
| White            | 9.13             | .73  | 4.86  | 9.71     | .46                   | $/ \setminus$ | 2.88  | 9.64                          | .43  | 2.72  |
| Two or more      |                  | \ /  |       |          |                       |               |       |                               | \ /  |       |
| Races            | 16.27            | 2.84 | 10.60 | 18.01    | 1.81                  |               | 6.12  | 17.87                         | 1.77 | 6.03  |
|                  |                  |      |       |          |                       |               |       |                               |      |       |

## Final thoughts

- Balancing currency and precision for geographies with populations over 65,000
- Custom estimates are not directly comparable to 3-year Census estimates

 Be mindful of changes in geography or variables; dollar-denominated variables