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Tools & Methods: 
Machine learning - Object
Detection

RCNN Mask
Geographic Information Systems
(GIS) 

ArcGIS Pro v 3.4

Data, Tools and Methods

Data:
USDA NAIP Aerial Images
Local administrative data sets
(property data)

ACS Data: 5-year 2023
Units in structure (B25024)



Area of Interest

NE region of Sullivan County, Tennessee



Area of Interest

Census Tracts

1.Tract 426.00

2.Tract 427.02

3.Tract 427.03

4.Tract 427.04 
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426.00

427.04

428.02

427.03
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Training Image Samples

Manufactured Home Community
A form of alternative housing
Mixed with single and double wide units. 
More closely resembles “formal subdivision” infrastructure. 
Most units + land likely owned by residents

Mobile Home Park
A form of informal housing
Primarily single wide units. Some units are partially covered
with tree canopy, creates challenges for visibility.
Residents likely own the unit, but not the land. 





Interpreting Model
Performance

Training vs. validation loss

Both training loss and validation

curves drop quickly and

converge

Lower validation loss = model is

effectively learning patterns

Reaches optimal

“generalization” or learning

performance between 500-1000

batches

AP score = 81.9%





TRACT
TOTAL
HOUSING UNITS 

MARGIN
OF ERROR
(+/-)

MOBILE
HOMES

MARGIN
OF ERROR
(+/-)

 MODEL
COUNT

% MODEL
ACCURACY

426.00 1857 155 149 84 196 62.8%

427.02 1053 127 18 21 64 84.4%

427.03 1456 304 15 26 11 0%

427.04 1305 243 55 36 104 76%

428.01 1264 177 20 21 43 0%

428.02 1932 142 88 57 114 35.1%

430.00 2083 215 821 191 621 91.8%

Model Output Compared to ACS 2023 5-YR Units in Structure Data Table



Visualizing the Model Counts Compared to ACS

Census Tracts

Housing units total per tract (ACS)

Mobile units total per tract (ACS)

Housing units MOE (+/-)

Mobile units MOE  (+/-)

Model count

*Not to scale -
compare to chart in previous slide



Interpreting Model Performance

Average Precision (AP) is a common metric for object detection tasks. It evaluates
the quality of the model's bounding box predictions and classifications across
different confidence thresholds. 

Our initial model AP: 67.3%, which indicates that the model  learned to identify
manufactured housing units to a moderate degree. This means that on average,
the model was successful 2 out of 3 predictions. Our model is making some
incorrect detections (false positives) and/or failing to detect some actual units
(false negatives).



Understanding the Patterns in the Model's Mistakes 

False Positives: What is the model incorrectly identifying as manufactured housing?

Are there common features confusing it?

False Negatives: What manufactured housing units is the model missing? Are they

too small, occluded, or have unusual appearances?

Localization Errors: Are the bounding boxes and masks accurate for correctly

classified objects?



Model Improvments

Overfitting: when a model learns the training data too well and cannot make
accurate predictions on new, unseen data 

How to overcome this: 
Improve training sample dataset 

increase number of samples
Use multiple images to increase diversity 

Attempt running the model with a variety of parameters to test differences
in outputs
Collection of ground truth points for validation of accuracy 



Challenges and Limitations

Limitations
Computational power
Human labor constraints

Challenges
Aerial imagery 

processing
spatial resolution

Nature of the study area 
Tree cover
Changes in slope 
Shadows 



Next Steps
Our purpose is to help practitioners identify areas of need and support planning by local
developers. It can also help inform future policy and program development.

Expand on other pre-trained building footprint models. We would like to successfully replicate
this approach where local property data may not be available to help validate administrative
sources. 

Recruiting and training volunteers and staff to help build our database of observations to use
for validating model training (ArcGIS Survey123)  

Moving beyond Appalachia and identifying any systematic biases that might exist in ACS
sampling (i.e. are some areas consistently under or over counted in ACS relative to the
observations - why might that be?) 

local zoning 
Hard to reach places
Urban v rural
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