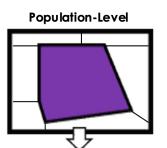


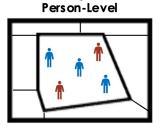
May 29, 2025

Using Synthetic Populations to Model Travel Burdens Among U.S. Veterans Health Administration Patients

Joseph Tuccillo

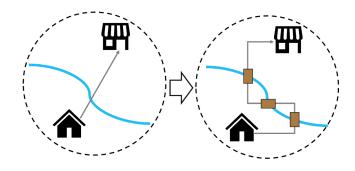
Geospatial Science and Human Security Division Team: Angela Cunningham, James Gaboardi, Whitson Buck


ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY


Disclaimer: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-000R22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paidup, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan https://energy.gov/downloads/doe-public-access-pla

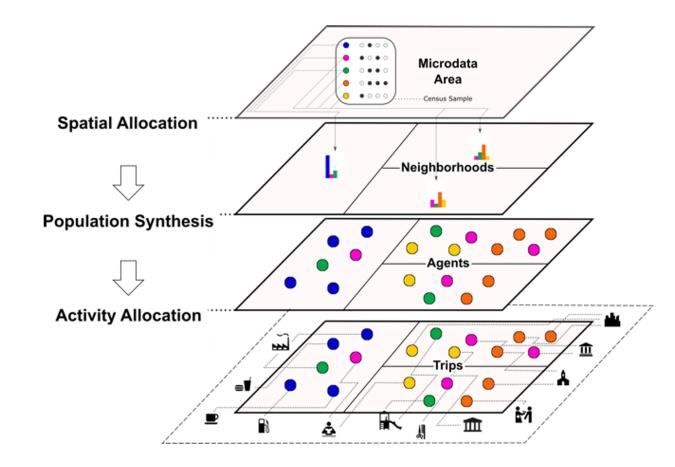
Motivation

Population Heterogeneity


- Population subgroups exhibit variability in travel behavior via lifestyle (e.g., demographic, economic) characteristics
- How do cross-sectional characteristics of VHA patient populations (e.g., demographic, economic, mobility) affect access to points of care?

Real-World Resource Access

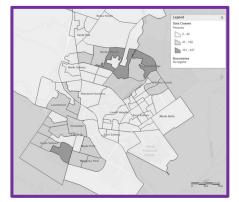
- Residential location + transportation
 networks affect access to points of care
- Network-based impedance affects access (modality, physical barriers, traffic/weather)



Synthetic populations, realistic virtual representations of people/households, allow us to address these challenges through large-scale "what if?" scenarios.

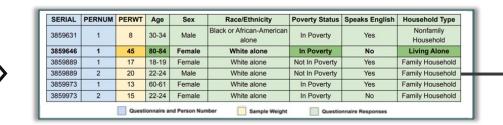
UrbanPop: High-Fidelity Synthetic Populations for the United States

- Powered by US Census Bureau's American Community Survey (ACS) and Public Use Microdata Sample (PUMS)
 - Hundreds of available socio-demographic, economic, housing, and mobility attributes
- Population characteristics realistically match ACS neighborhood profiles anywhere in the United States
- Cross-sectional representations of individuals at high spatial resolution for modeling access to healthcare, nutrition, and other essential services

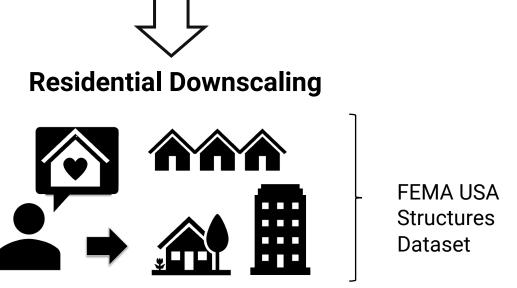


Residential Synthetic Population Baseline

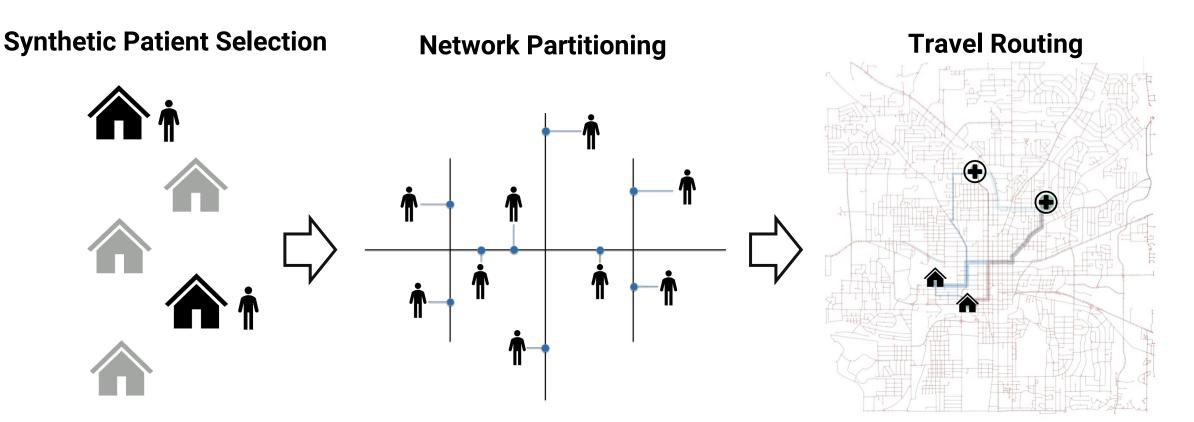
Population Synthesis



Simulate virtual households/people from the ACS PUMS whose aggregate characteristics (e.g., sex/age, poverty, housing) fit 90% Margins of Error on neighborhood population statistics from the ACS Summary File (SF).

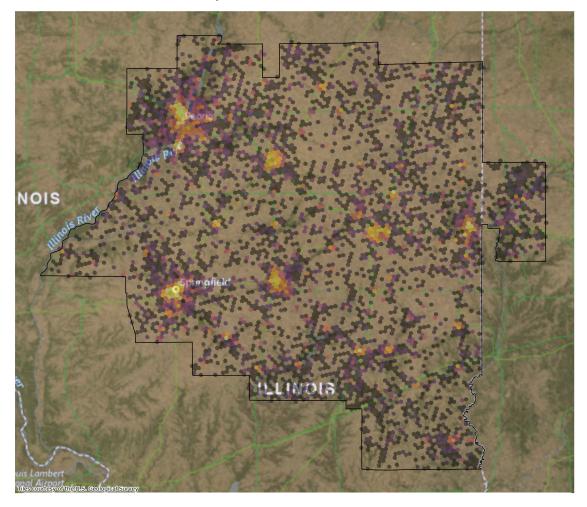

Public domain image from Wikimedia Commons

Attribution

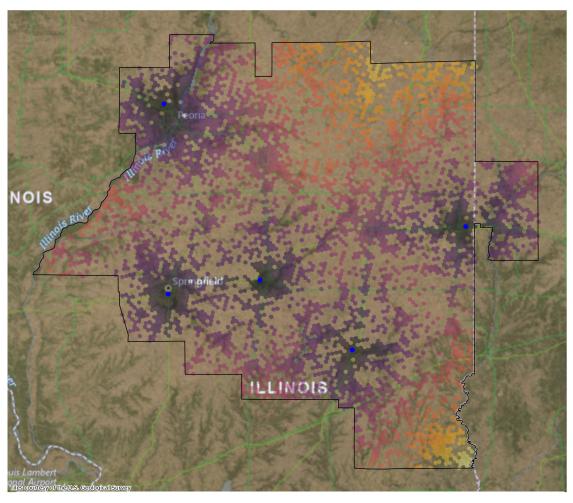

Each synthetic household and its individual members can by attributed by PUMS characteristics via record linkage on household/person ID.

Synthetic households "select" a residential location within their neighborhood via their linked dwelling type.

Modeling Access to VA Points of Care


Select VHA patients via PUMS record linkage

Patients begin trips at nearest entry points to transportation network (vs. intersections).


Evaluate network-based impedance between patient home locations and all available points of care

Synthetic Patient Mobility

Synthetic VHA Patients

Initial Patient Mobility Analysis

Study Design

One 2019 VISN market per 9 US Census Divisions in Continental United States

- Synthetic population → ACS 2015-2019 5-Year Estimates
- VHA patients → VA outpatient clinic visits for 2019 via CDW

Area of Interest (AOI) definitions:

- Core market only
- Core market + edge counties

In total, N = 18 AOIs

Analysis

Measure time-based impedance between synthetic patient home location and VA outpatient clinic location on OpenStreetMap (OSM) drive network

Outpatient clinic locations from VAST

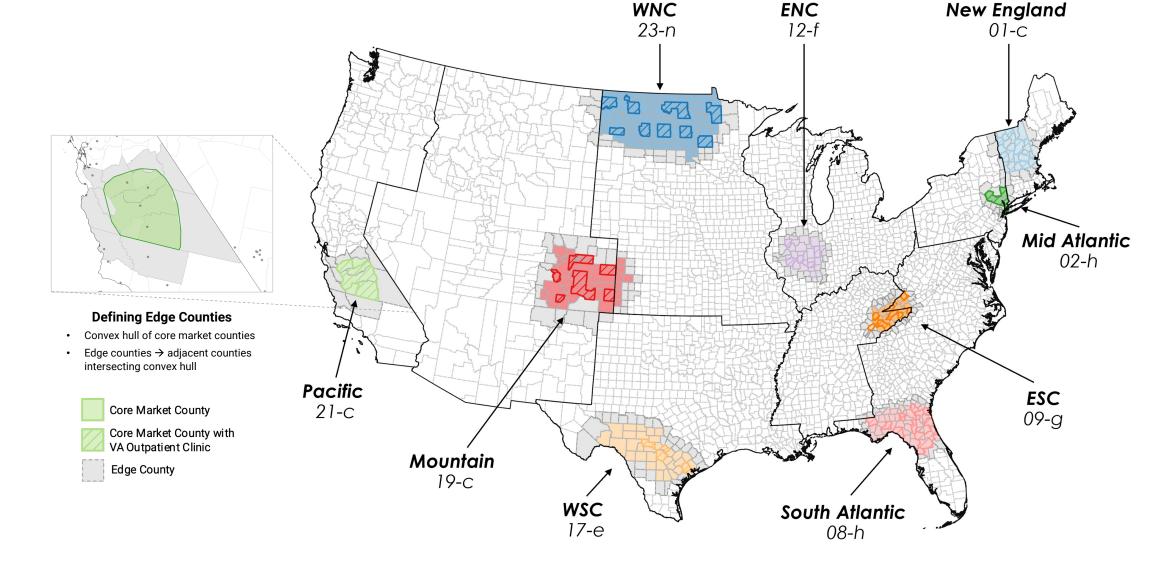
Compare patient trip summary statistics across AOIs:

- Least-cost path (lowest travel time) to any clinic in AOI
- Mean travel time to all clinics in AOI

Validation

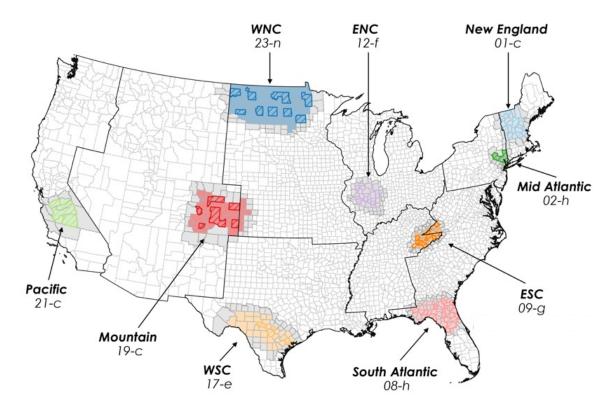
Neighborhood demographics → compare aggregate synthetic

population characteristics to ACS Summary File 90% Margins of Error


 Demographic, social, economic, housing, and mobility characteristics + Veteran status

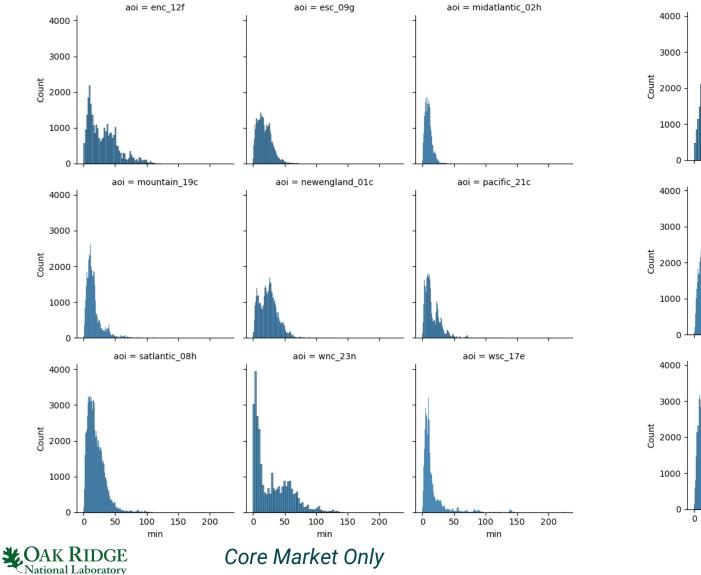
Mobility → compare synthetic vs. observed (VAST) origin-destination matrices

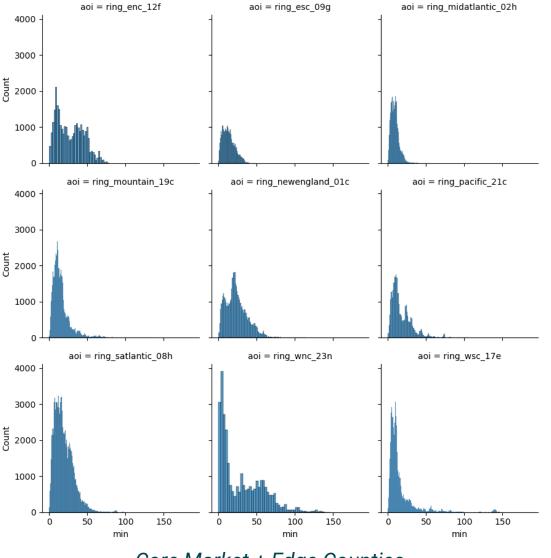
- Home ZIP → Outpatient clinic ZIP
- Exclude trips outside area of interest
- Canonical Correlation Analysis (CCA)



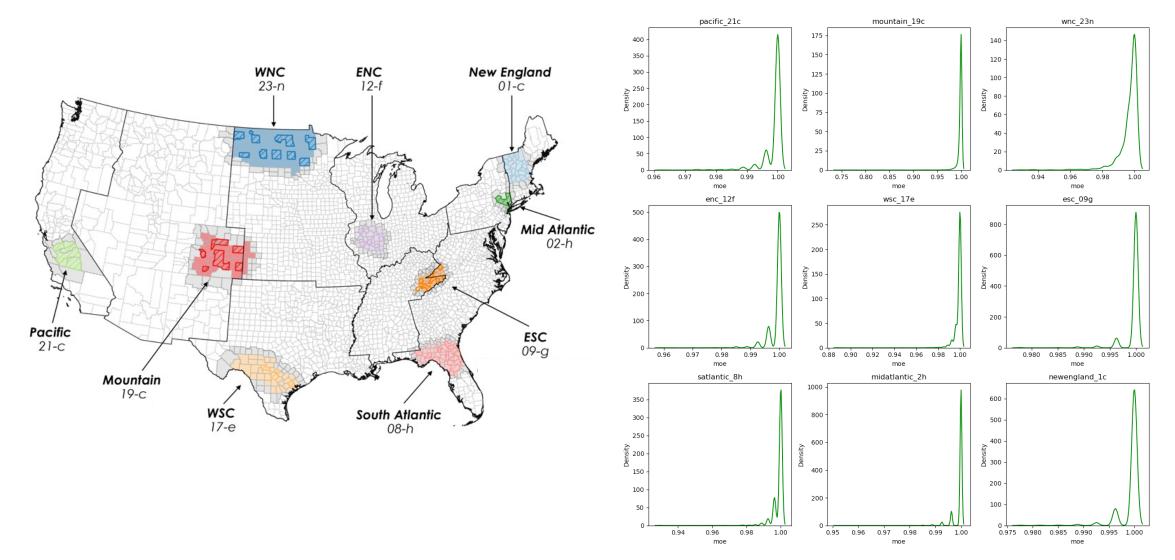
Selected VISN Markets by US Census Division

VA Outpatient Clinic Access by VISN Market


	Mean Least-Cost (Core Market)	Mean Least-Cost (Core Market + Edges)	Grand Mean (Core Market)	Grand Mean (Core Market + Edges)
Mid-Atlantic (02-h)	9.6	9.1	55.5	59.1
WSC (17-e)	15.7	15.5	43.4	70.9
Mountain (19-c)	16.0	15.6	95.7	119.7
Pacific (21-C)	16.1	17.6	53.0	112.3
ESC (09-g)	18.5	13.3	87.2	109.1
South Atlantic (08-h)	19.5	18.9	101.1	122.1
New England (01-c)	24.7	23.7	110.6	126.5
WNC (23-n)	29.8	29.7	184.1	202.5
ENC (12-f)	30.8	27.3	82.8	113.0

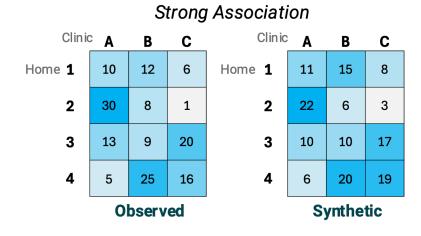

Mean travel time estimates, in minutes, for least-cost paths (selected VA outpatient clinic) and to all outpatient clinics in the area of interest ("grand mean").

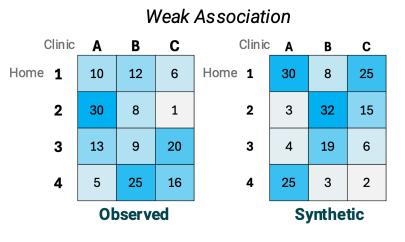
VA Outpatient Clinic Access by VISN Market


Travel Time along Least-Cost Paths

Core Market + Edge Counties

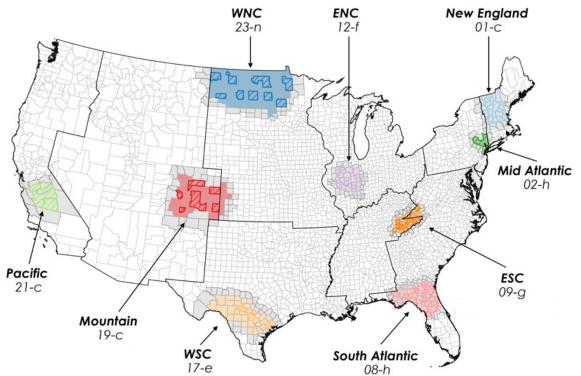
Validation: Neighborhood Demographics




Percentage of block group-level constraints conforming to ACS SF 90% Margins of Error

Validation: VHA Patient Mobility

- Origin-Destination (O-D) matrices:
 Home ZIP → Outpatient ZIP
 - Observed patients → CDW home address ZIP
 - Synthetic patients → georeference by ZCTA5, assign to outpatient clinic with lowest travel cost
- Compare O-D matrices with Canonical Correlation Analysis (CCA)
 - CCA R²: relative strength of association between synthetic/observed in terms of visits to outpatient clinics


Validation: VHA Patient Mobility

Census Division	Origin ZIPs	Destination ZIPs	Observed Trips outside Market %	$\begin{array}{c} \mathbf{CCA} \ \mathbf{Adj.} \\ R^2 \end{array}$	p(Pillai)
Pacific	136	4	8.9	0.878	< 0.0001
Mountain	328	12	5.3	0.758	0
WNC	533	11	11.3	0.856	0
ENC	387	5	18.5	0.869	0
WSC	242	9	5.3	0.648	0
ESC	259	12	7.2	0.768	0
S Atlantic	330	16	10.3	0.745	0
Mid Atlantic	424	18	3.5	0.668	0
New England	496	13	9.9	0.793	0

Market-Only

Core Market + Edge Counties

Census Division	Origin ZIPs	Destination ZIPs	Observed Trips outside Market %	$\begin{array}{c} \mathbf{CCA} \ \mathbf{Adj.} \\ R^2 \end{array}$	p(Pillai)
Pacific	136	5	8.6	0.805	< 0.0001
Mountain	328	15	4.8	0.761	0
WNC	533	14	10.6	0.690	0
ENC	387	11	15.2	0.621	0
WSC	242	13	4.3	0.561	< 0.0001
ESC	259	12	7.2	0.766	0
S Atlantic	330	26	6.9	0.718	0
Mid Atlantic	424	24	3.5	0.583	0
New England	496	20	9.4	0.692	0

Change in	Census Division	$\Delta(R^2)$ (vs. Market-Only)
CCA R ² :	Pacific	-0.073
UCA R	Mountain	0.004
	WNC	-0.165
Core-Edges vs.	ENC	-0.247
Market-Only	WSC	-0.087
,	ESC	-0.002
	S Atlantic	-0.028
	Mid Atlantic	-0.085
	New England	-0.101

Summary of Findings

VA Outpatient Clinic Access

VISN markets with large urban centers \rightarrow reduced travel time

- Mid Atlantic (02-h): New York City metro
- West South Central (17-e): San Antonio metro

Mixed urban/rural VISN markets with small-midsize urban centers → increased travel time

- West North Central (23-n): North Dakota/Northeast Minnesota
- East North Central (12-f): Central Illinois

Neighborhood Demographics

Synthetic populations overall closely recreate block group-level ACS SF estimates

Some deficiencies for block groups with large group quarters/military populations

VHA Patient Mobility

Overall strong association between synthetic, observed patient flows

 ...but a weaker association for VISN markets with large urban centers (Mid Atlantic/02-h; West South Central/17-e)

Market-Only AOIs tend to better represent observed patient mobility than Core-Edges AOIs

Outlook

In Progress

Modernizing synthetic populations to ACS 2019 – 2023 5-Year Estimates

Improving selection of synthetic VHA patients

 Constrain P-MEDM on health insurance coverage (PUMS: HINSx / ACS: B27010)

Adding indicator for telehealth access to complement physical access

Constrain P-MEDM on internet access (PUMS: ACCESSINET / ACS: B28002)

Examining relationship between **low access to points of care** and **urbanicity**

• GHS-SMOD: very low-density rural → dense urban core

On the Horizon

Large-scale comparative analysis of VHA patient access across VISN markets in United States

• By urbanicity, median age, physical/telehealth access, etc.

Expanding travel modalities

• Walk/bike infrastructure, public transit

Synthetic population ensembles for uncertainty quantification

Thank you!

and the second s

Questions?

Contacts

tuccillojv@ornl.gov cunninghamar@ornl.gov gaboardijd@ornl.gov buckwj@ornl.gov

THE REAL PROPERTY OF THE PARTY OF THE PARTY

Try our tools on GitHub!
 <u>https://github.com/likeness-pop/livelike</u>

