

Congressional District Health DASHBOARD

Calculating 118th Congress Metrics for the Congressional District Health Dashboard

Taylor M. Lampe, MPH

Alexander Chen, MPH; Anne Vierse, MS; Isabel S. Nelson, MPH; Yuruo Li, MPH PhD; Lorna E. Thorpe, MPH PhD; Marc N. Gourevitch, MD MPH; Benjamin R. Spoer, MPH PhD

2023 ACS Data Users Conference May 18, 2023

Congressional District Health DASHBOARD

Introducing the Dashboard

Introducing the Dashboard

Federal policy makers and advocacy organizations need access to **rigorous**, **non-partisan**, **and timely data** about the health of their congressional district (CD) constituents to inform policy and practice

- In the absence of CD-specific estimates, county and state data are frequently used, which do not adequately capture the populations living in CDs
- To our knowledge, ACS is the only national data source that directly provides estimates for CDs*

*ACS data, though, are not yet available for the current 118th Congress. A special data product of Social/ Economic/ Housing/ Demographic profiles was released from ACS in January 2023 for the 118th Congress

Why the Dashboard?

Introducing the Dashboard

To meet this need, we developed the **Congressional District Health Dashboard (CDHD)**

- Our team at NYU Langone developed the methods and website for this Dashboard in one year, building on our experiences with the City Health Dashboard
- The CDHD website was launched in January 2023 as the newly elected 118th Congress took office
- Over 35 metrics related to health and its drivers are now publicly available for the first time for the 118th Congress, including estimates derived from ACS data

What Does the Congressional District Health Dashboard Measure?

Health Outcomes

Breast cancer deaths* Cardiovascular disease deaths* Colorectal cancer deaths* COVID Local Risk Index Diabetes Firearm homicides* Firearm suicides* Frequent mental distress Frequent physical distress High blood pressure Life expectancy Low birthweight* Obesity Opioid overdose deaths* Premature deaths (all causes)*

Broadband connection Children in poverty* High school completion* Income inequality Neighborhood racial/ethnic segregation Racial/ethnic diversity Rent burden Unemployment*

Binge drinking Physical inactivity Smoking Teen births*

Physical Environment

Air pollution – particulate matter Housing with potential lead risk Lead exposure risk index Limited supermarket proximity*

Dental care Prenatal care* Preventative services, 65+* Routine checkups, 18+ Uninsured*

Those shown with a * have demographic breakdowns available (pending large enough racial/ethnic groups within the district). Those metrics shown in this color incorporate ACS data.

www.CongressionalDistrictHealthDashboard.org

Robert Wood Johnson Foundation

Introducing the Dashboard

Dashboard Features Overview

- Metrics Overview complete list of all metrics and how the district is doing compared to the national average
- District Facts Population charts by age and race/ethnicity, plus district and state representation in Congress
- Metric Maps US, state or congressional district map for all metrics with comparison to state or national values
- Metrics by Demographics For select metrics, see the breakdown by racial/ethnic group, or age and sex
- Data Access Download the data and technical documentation

About the Metrics Overview

The Metrics Overview shows how this congressional district is doing for all the metrics available on the Dashboard. Metrics fall into 5 domains (Health Outcomes, Social and Economic Factors, Health Behaviors, Physical Environment and Clinical Care), but are listed below in alphabetical order as a single group. You can explore more about each metric, click on each metric name to head to the map, or explore District Facts.

To analyze this district for a metric in a visual way: 💦 Explore the Map

Comparison Legend 🔘 Better than the average 🛕 Around the average 🦉 Worse than the average Metric **New York 10th Estimate** New York 10th Comparison 0 Air Pollution - $9.1 \,\mu g/m^3$ \triangle The New York 10th is around the U.S. average for this metric. Particulate Matter 🔒 Average daily concentration (µg/m³) of fine particulate matter (PM2.5) per cubic meter of air throughout a year **Binge Drinking** 21.5% The New York 10th is worse than the U.S. average for this metric. Percentage of adults who report binge drinking in the past 30 days **Breast Cancer** 18.5 deaths per 100,000 \wedge The New York 10th is around the U.S. average for this metric. Deaths 🚯 Deaths due to breast cancer in females per 100,000 female population

< <u>Map of United States</u> < <u>Map of New York</u>

Metric Map of the New York 10th Congressional District

Calculating 118th Estimates

Congressional

District Health

DASHBOARD

Calculating 118th Estimates

The Method Challenge

Since CD estimates are not available directly from data sources for the 118th Congress, we aggregated from tract/county estimates

- While CDs have similar population sizes, they vary greatly in their physical size due to differential population densities across urban and rural areas
 - eg. New York 9 covers a portion of Brooklyn, NY
 - eg. Montana 1 covers half of the state
- Aggregation methods must account for the differential population densities and CD sizes across the country

Whenever possible, we use Census tract-level estimates instead of counties; imperfect county-overlap with CDs (especially in urban areas) can greatly impact estimate accuracy

Differences in Geographic Overlap Between Congressional Districts and Either Census Tracts or Counties in Arizona 7th District

Calculating 118th Estimates

Our Method Overview

A quasi-dasymetric approach:

- 1. Take the original tract (or county) rate or % estimate*
 - When combining multiple variables, calculate rate or % estimate at the tract or county-level
- 2. Multiply by Census block-derived population weight
- 3. Sum population-weighted estimates to the CD

This method has been successfully applied to congressional districts in existing literature.¹⁻⁴

Congressional District Health DASHBOARD

*Method differs slightly when aggregating count estimates

Calculating 118th Estimates

Creating Population Weights

- We acquired files from each state assigning 2020 Census blocks to 118 CDs*, then combined these with 2020 block population counts from DCS
- Population weights were created by identifying how much of each tract/county's population overlapped with associated CDs, using shared underlying blocks
 - We created weights for multiple demographic groups, including Total population, Hispanic, White, Black, Asian, and "Other"
- For tract/county estimates built from 2010 Census blocks, we incorporated a file from IPUMS NHGIS to re-apportion 2010 blocks into 2020 blocks.⁵

Calculating 118th Estimates

Estimate Validation

To validate our methods, we created aggregated **116 Congress estimates** and compared them to estimates calculated directly from ACS 116 data

- Mean Absolute Error values were consistently below 1 across 3 measures and all demographic breakdowns
- More error was introduced when CD estimates were missing sufficient contributing tract (>25%) or county (>10%) data; we censor these on the website
 - Demographic subgroups that have smaller populations are most likely to be censored

Calculating 118th Estimates

R Function

We created an internal R function to accurately and quickly perform these aggregations across multiple measures + demographic subgroups

<pre>output <- block_agg(start_shape = "tract",</pre>
end_shape = "cd",
df = input,
var = est,
$census_yr = "2020",$
demo = "total",
$counts_agg = F$)

- The interpolate_pw() function from the tidycensus package can perform identical aggregations using spatial file inputs
- Its run-time, though, is significantly slower for national files

Congressional District Health DASHBOARD

 \bigcirc

Next Steps

Next Steps

The Dashboard's Future

Continue getting this data into the hands of policy makers and advocacy organizations!

Early June data release:

- Multi-year data for ACS, CDC PLACES, and PM2.5 measures
- Addition of census tract estimates for identifying within-CD disparities

The future:

- New measures
- Downloadable reports
- Addition of non-voting bodies
- And more...

Stay in Touch

info@CDhealthdashboard.org

www.CongressionalDistrictHealthDashboard.org/subscribe

References

- 1. Rolheiser L, Cordes J, Subramanian SV (2018). Opioid Prescribing Rates by Congressional Districts, United States, 2016
- 2. Wilson J, Mansfield C (2010). Disease, Death, and the Body Politic: An Areal Interpolation Example for Political Epidemiology.
- 3. Hao Y WE, Jemal A, Pickle LW, Thun MJ. U.S. congressional district death rates. International Journal of Health Geography. 2006
- 4. Takai A, Kumar A, Kim R, Subramanian SV. Life expectancies across congressional districts in the United States. Soc Sci Med. 2022
- Manson S, Schroeder J, Van Riper D, Kugler T, Ruggles S. Data from: IPUMS National Historic Geographic Information System: Version 17.0 2010 Blocks -> 2020 Blocks Crosswalk. 2022. *Minneapolis, MN*.

