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NCES SIDE Project

" |nitiated in 2015 by NCES with Census EDGE Branch
= Spatially interpolated demographic estimates (SIDE)

= Applies model-based spatial interpolation methods to ACS
responses to create an income prediction surface

" Primary objectives:

" Develop additional poverty indicator for students and
schools (+ Free/Reduced-price lunch counts)

" Provide better neighborhood poverty indicator to support
educational research




Design Challenges

= Need a flexible neighborhood definition that can be
anchored at specific locations (not tract boundaries)

= Need neighborhood estimates with reasonable reliability
(ideally the size of a block group with the CV of a tract)

= Need geographic precision without risking disclosure

= Need regular updates that are operationally feasible within
existing production environment




Design Strategy

= Define neighborhoods based on neighbors (not boundaries)

= Use kriging to model a continuous prediction surface of the
income-to-poverty ratio (IPR) for the U.S.

= Based on ACS responses from households with school-age children
= Not constrained by Census geography

= Create raster approximation of prediction surface for NCES

= Produce IPR estimates at specific geocoded locations
= Supports scalable assignment solution for student address geocodes
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Kriging
" Geostatistical interpolator that uses information from
measured locations to predict values at unmeasured location

= Two stage modeling:
= Models semivariogram to quantify spatial structure in data (how
differences in paired responses vary by distance)
= Applies model weights from stage #1 to nearest neighbors (25) to
predict value at unsampled location

= Stationarity:
= Kriging models assume a consistent distance-difference relationship
across study area (often not the case for larger regions)
= Empirical Bayesian kriging (EBK) manages non-stationarity by
creating and blending a large collection of local models
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Figure 1.
Model IPR to quantify spatial structure in the data
(functions provide a continuous prediction surface)
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SIDE Neighborhood Extent

Block Group 30 1
Tract 33 4
ZCTA 91 33
SIDE 12 0.71

*Based on 2015 TIGER Shapefiles and 95,000+ school locations from
2014-2015 Common Core of Data (CCD)
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Figure 5.

Raster layer provides estimate at cell center
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Benefits, Limitations, and Next Steps

= Spatially precise income indicator optimized for any location
= Safe to develop and apply
= Significant potential as a school poverty indicator

" Does not provide estimates for populations or jurisdictions
" |gnores potentially meaningful boundaries
= Lack of intuition about IPR (What does 317 mean?)

= Compare with Free/Reduced-price meal data
" |ncrease processing efficiency
" |[mprove model (e.g., integrate tax data)
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Questions?

Doug Geverdt douglas.geverdt@ed.gov

National Center for Education Statistics
Education Demographic, Geographic, and Economic Statistics (EDGE) Program

NCES school neighborhood poverty estimates
https://nces.ed.gov/programs/edge/Economic/NeighborhoodPoverty
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