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Outline

• Differential Privacy for ACS harder than Decennial

– Higher Dimensionality
• Several known approaches to mitigate impact of Differential Privacy for 

high dimensionality, e.g., [Qardaji14,McKenna18]

– Stratified survey rather than enumeration

• Solutions - Smooth sensitivity for:

– Missing data imputation

– Post-stratification

• Other Challenges
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ACS Challenges

• Considerable variance in response quality and rates 
across different groups

– Geographic

– Demographic

• Statistical methods used to reduce bias and variance

– Stratified sampling

– Missing data imputation

– Weighting approaches

These make differential privacy more challenging
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ACS Challenges

• Differential privacy based on hiding the impact of any single 
individual on a published value

• Statistical methods used to reduce bias and variance
– These can impact how much one response influences an estimate!

• Simple example:  Weighting
– Samples with high weights have greater impact on outcomes

– For a count, one person changes result by at most 1

– But for an estimate from a weighted sample, one person can change 
the value by their weight, so must add noise to cover highest 
possible weight
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These problems are solvable!

• Formal privacy techniques to reduce bias given biased 

samples

– Missing data imputation

– Post-stratification

We’ve developed approaches that address each of these
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Real-world DP:

What is the Sensitivity?

• Sensitivity:  Maximum change in query/statistic from 

adding or deleting one individual

• Examples of sensitivity

– Count (e.g., how many high income individuals in this room): 1

– Average (e.g., average income in this room):

σ𝑎𝑙𝑙 𝑖𝑛𝑐𝑜𝑚𝑒

𝑛
−
σ𝑎𝑙𝑙+1 𝑖𝑛𝑐𝑜𝑚𝑒

𝑛
≤

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛𝑐𝑜𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
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Minimum possible
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Problem:  Missing Data

And does this impact privacy?

• Assignment
– Missing value determined 

from other characteristics of 
individual

– Assuming rules not derived 
from other records, no impact 
on sensitivity

• Allocation
– Copy values from similar 

“donor” individual

– Increases Sensitivity!
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Global Sensitivity High

• Can construct situations 
where changing one 
individual dramatically 
changes result

• Global Sensitivity of count 
query ≈ size of dataset

– Any mechanism based on 
global sensitivity will have 
untenably high variance.
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Solutions

• Ignore missing data
– No impact on sensitivity 

low variance solution

– But biased result
• Data frequently not missing 

completely at random

• Low sensitivity allocation 
method?
– Will this effectively reduce 

bias?

• Smooth Sensitivity

9

Smooth Sensitivity
(Nissim, Raskhodnikova & Smith STOC’07)
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• Idea:  Neighbors of current database don’t induce big 

changes

– Local sensitivity low

• Pathological datasets far away from the real dataset have 

substantially less impact on privacy.

• Sensitivity based on distance from actual data

– For 𝛽 > 0, the 𝛽−smooth sensitivity of 𝑓 is

𝑆𝑓,𝛽
∗ 𝑥 = max

𝑦∈𝐷𝑛
(𝐿𝑆𝑓 𝑦 ⋅ 𝑒−𝛽𝑑(𝑥,𝑦))
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Problem statement

• (Deterministic) Nearest 

neighbor

• Determine upper bound on 

local sensitivity of function 

on data and allocated values

• Solutions for count, mean, 

variance

– Technical details in a paper 

under review
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Evaluation Testbed

• Idea:  Model missing data based on ACS Public Use 

Microdata

– We know what was missing

– Use to build model of what makes data missing

• Apply model to 1940 Census Data

– Complete dataset (no weighted sample issues)

– Known ground truth
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1940 Mean Individual Income

Ages 20-59
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Ages 20-29 Ages 40-49
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Proportion of Individuals unable to support 

Family of 4 Above Poverty Line
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Post-Stratification

• Idea:  Determine stratification 
based on known statistics
– Number of francophones in 

Fredericton

• Weight francophones in sample 
so results match known values
– Improves correlated survey results 

for which values unknown (e.g., if 
occupation varies by language)

• Global Sensitivity off the charts!
– Hypothetical survey that only 

captures one francophone –
represents ~4000 individuals
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Challenge with Limiting Post-

Stratification Weight
• Known:  Count of Circles, Squares

– Limit maximum weight to 4

– 20 known squares, 4 in sample – weight 
exceeds limit

– Weight based on total count only:
40 / 20 in sample = 2

• Query:  Number of blue
– One in sample

– One individual represents 2, so query 
results = 2

• Neighboring Database: Additional blue 
square in sample
– 5 squares in sample, so weight = 4

• Number of blue = 2 * 4 = 8
– Sensitivity 8-2 = 6!
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Solution: Stochastic Post-Stratification
(with Aref Dajani, Stephen Clark, Rolando Rodriguez-

Rivera, U.S. Census Bureau)

• Select post-stratification binning 𝑃 for dataset 𝐷

• Balance maximum weight and fine granularity

– 𝑓 𝐷, 𝑃 =
|𝑃|

𝑊0
𝑃(𝐷)

• Choose among possible 𝑃 with probability 𝑒𝜖𝑓(𝐷,𝑃)

– Differentially private selection avoids one individual having too 
great an impact on how post-stratification done

• Currently running experiments to evaluate bias reduction / 
variance tradeoff

17

Conclusions

• Formal Privacy for ACS is challenging

– But solvable

• Requires new techniques, which could be

– New approaches to differential privacy

– New techniques for bias/variance reduction that are more 
amenable to formal privacy

– New formal privacy definitions and methods

• The research community is making advances on all of 
these
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