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PURDUE Outline
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« Differential Privacy for ACS harder than Decennial

— Higher Dimensionality

» Several known approaches to mitigate impact of Differential Privacy for
high dimensionality, e.g., [Qardajil4,McKennal8]

— Stratified survey rather than enumeration
 Solutions - Smooth sensitivity for:

— Missing data imputation

— Post-stratification
» Other Challenges
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PORDYE ACS Challenges
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« Considerable variance in response quality and rates
across different groups
— Geographic
— Demographic
« Statistical methods used to reduce bias and variance
— Stratified sampling
— Missing data imputation
— Weighting approaches
These make differential privacy more challenging
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PORDUE ACS Challenges
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« Differential privacy based on hiding the impact of any single
individual on a published value
« Statistical methods used to reduce bias and variance
— These can impact how much one response influences an estimate!
« Simple example: Weighting
— Samples with high weights have greater impact on outcomes
— For a count, one person changes result by at most 1

— But for an estimate from a weighted sample, one person can change
the value by their weight, so must add noise to cover highest
possible weight
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PORDVE  These problems are solvable!
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« Formal privacy techniques to reduce bias given biased
samples
— Missing data imputation
— Post-stratification
We've developed approaches that address each of these
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What is the Sensitivity?

« Sensitivity: Maximum change in query/statistic from
adding or deleting one individual

« Examples of sensitivity
— Count (e.g., how many high income individuals in this room): 1

— Average (e.g., average income in this room):
/ maximum possible

Department of Computer Science

Y.q income Za”+1income< Maximum income

n n ~.Number of individuals

Minimum possible
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PURDUE Problem._ MlSSlng D_ata
And does this impact privacy?
« Assignment
— Missing value determined O O O
from other characteristics of O
individual O
— Assuming rules not derived
from other records, no impact O ‘
on sensitivity O
* Allocation ‘ O
— Copy values from similar O
“donor” individual ‘
— Increases Sensitivity! O
PURDUE Global Sensitivity High
« Can construct situations
where changing one O O O

individual dramatically
changes result

O
« Global Sensitivity of count O
query = size of dataset O Q
— Any mechanism based on O O ‘

global sensitivity will have
untenably high variance. O
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PURDUE Solutions
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 Ignore missing data
— No impact on sensitivity =
low variance solution
— But biased result

+ Data frequently not missing
completely at random

* Low sensitivity allocation O
method?
— Will this effectively reduce

bias? O
« Smooth Sensitivity
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PURDUE Smooth Sensitivity
PMIWERSITY  (Nissim, Raskhodnikova & Smith STOC’07)
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 |ldea: Neighbors of current database don’t induce big
changes
— Local sensitivity low
» Pathological datasets far away from the real dataset have
substantially less impact on privacy.
» Sensitivity based on distance from actual data
- For § > 0, the f—smooth sensitivity of f is
S;,p(0) = max (LS; (y) - e7F4C))
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PURDUE Problem statement
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* (Deterministic) Nearest
neighbor O O O
* Determine upper bound on O
local sensitivity of function
on data and allocated values O

» Solutions for count, mean,
variance

— Technical details in a paper
under review O
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PORDUE Evaluation Testbed
» ldea: Model missing data based on ACS Public Use
Microdata
— We know what was missing
— Use to build model of what makes data missing

* Apply model to 1940 Census Data
— Complete dataset (no weighted sample issues)
— Known ground truth
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PURDUE 1940 Mean Individual Income
Ages 20-59
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1500 4 —
480
1250 4 %
1000 4
475
750
500 1 — ] 470
2501
0 465
-250
4 460 4 %
—500 4 T T T T T
ignored imputed gs-imputed ignored imputed
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purpue Froportion of Individuals unable to support ',
UNIVERSITY Famlly Of 4 AbOVe Poverty L|ne
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Ages 20-29 Ages 40-49

0.744 4 0.725 4
0.742 4
0.720 4
0.740 4
— 0.715
0.738 1 %l
0.710
0.736 1
=
ignored imputed ignored imputed
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PURDUE Post-Stratification
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* |ldea: Determine stratification
based on known statistics
— Number of francophones in
Fredericton
* Weight francophones in sample
so results match known values
— Improves correlated survey results

for which values unknown (e.g., if
occupation varies by language) mane

» Global Sensitivity off the charts!

— Hypothetical survey that only
captures one francophone —
represents ~4000 individuals
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PUR%JE Challenge with Limiting Post-

UNIVERSITY Stratlflcatlon Welght
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« Known: Count of Circles, Squares O O
— Limit maximum weight to 4 O O
— 20 known squares, 4 in sample — weight OO O

exceeds limit
— Weight based on total count only:

40 /20 in sample = 2 |:|
* Query: Number of blue O |:| O
— One in sample

— One individual represents 2, so query O |:| O

results = 2 |:|
* Neighboring Database: Additional blue
square in sample

— 5 squares in sample, so weight = 4 |:| |:| |:| O |:|
+ Numberofblue=2*4=8 O |:|
— Sensitivity 8-2 = 6! O O |:|
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27  Solution: Stochastic Post-Stratification

UPH\ER[I]:[EY (with Aref Dajani, Stephen Clark, Rolando Rodriguez-
Department of Computer Science R'Vera, US Census Bureau)

» Select post-stratification binning P for dataset D
« Balance maximum weight and fine granularity

—f(D,P)= 7]

Ws (D)
« Choose among possible P with probability e€/(?-?)

— Differentially private selection avoids one individual having too
great an impact on how post-stratification done

« Currently running experiments to evaluate bias reduction /
variance tradeoff
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PURDUE Conclusions
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« Formal Privacy for ACS is challenging
— But solvable

* Requires new techniques, which could be
— New approaches to differential privacy

— New techniques for bias/variance reduction that are more
amenable to formal privacy

— New formal privacy definitions and methods

« The research community is making advances on all of
these
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